A Numerical Study of Separation Performance of Vibrating Flip-Flow Screens for Cohesive Particles
Abstract
:1. Introduction
2. Simulation Methods
2.1. Contact Model of Particles
2.2. The DEM Model Setting of VFFS
2.3. Simulation Conditions
3. Effect of Surface Energy Level on Separation Performance
3.1. The Yield of Each Section of VFFS
3.2. The Yield Accounted for Size Fraction in Different Sections
3.3. The Screening Percentage of Different Size Fractions of Different Sections
3.4. The Screening Performance of Various Size Fractions in Different Sections and Screen Length
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, H.X. Determination of the operation range for flip-flow screen in industrial scale based on amplitude-frequency response. J. China Coal Soc. 2007, 7, 753–756. [Google Scholar]
- Gong, S.; Oberst, S.; Wang, X. An experimentally validated rubber shear spring model for vibrating flip-flow screens. Mech. Syst. Signal Process. 2020, 139, 106619. [Google Scholar] [CrossRef]
- Xiong, X.; Niu, L.; Gu, C.; Wang, Y. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens. J. Sound Vib. 2017, 411, 108–128. [Google Scholar] [CrossRef]
- Standish, N. The kinetics of batch sieving. Powder Technol. 1985, 41, 57–67. [Google Scholar] [CrossRef]
- Standish, N.; Bharadwaj, A.; Hariri-Akbari, G. A study of the effect of operating variables on the efficiency of a vibrating screen. Powder Technol. 1986, 48, 161–172. [Google Scholar] [CrossRef]
- Soldinger, M. Interrelation of stratification and passage in the screening process. Miner. Eng. 1999, 12, 497–516. [Google Scholar] [CrossRef]
- Soldinger, M. Influence of particle size and bed thickness on the screening process. Miner. Eng. 2000, 13, 297–312. [Google Scholar] [CrossRef]
- Cleary, P.W.; Sinnott, M.D.; Morrison, R.D. Separation performance of double deck banana screens—Part 1: Flow and separation for different amplitudes. Miner. Eng. 2009, 22, 1218–1229. [Google Scholar] [CrossRef]
- Cleary, P.; Sinnott, M.D.; Morrison, R.D. Separation performance of double deck banana screens—Part 2: Quantitative predictions. Miner. Eng. 2009, 22, 1230–1244. [Google Scholar] [CrossRef]
- Davoodi, A.; Bengtsson, M.; Hulthén, E.; Evertsson, C. Effects of screen decks’ aperture shapes and materials on screening efficiency. Miner. Eng. 2019, 139, 105699. [Google Scholar] [CrossRef]
- Dong, K.; Esfandiary, A.H.; Yu, A. Discrete particle simulation of particle flow and separation on a vibrating screen: Effect of aperture shape. Powder Technol. 2017, 314, 195–202. [Google Scholar] [CrossRef]
- Zhao, L.L.; Liu, C.S.; Yan, J.X.; Jiang, X.W.; Zhu, Y. Numerical simulation of particle segregation behavior in different vibration modes. Acta Phys. Sin Ch. Ed. 2010, 59, 2582–2588. [Google Scholar]
- Wang, Z.; Liu, C.; Wu, J.; Jiang, H.; Zhao, Y. Impact of screening coals on screen surface and multi-index optimization for coal cleaning production. J. Clean. Prod. 2018, 187, 562–575. [Google Scholar] [CrossRef]
- Limtrakul, S.; Rotjanavijit, W.; Vatanatham, T. Lagrangian modeling and simulation of effect of vibration on cohesive particle movement in a fluidized bed. Chem. Eng. Sci. 2007, 62, 232–245. [Google Scholar] [CrossRef]
- Yang, F.; Thornton, C.; Seville, J. Effect of surface energy on the transition from fixed to bubbling gas-fluidised beds. Chem. Eng. Sci. 2013, 90, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Cleary, P.W.; Wilson, P.; Sinnott, M.D. Effect of particle cohesion on flow and separation in industrial vibrating screens. Miner. Eng. 2018, 119, 191–204. [Google Scholar] [CrossRef]
- Cao, B.; Li, W.H.; Wang, N.; Bai, X.Y.; Wang, C.W. Calibration of Discrete Element Parameters of the Wet Barrel Finishing Abrasive Based on JKR Model. Surf. Technol. 2019, 48, 249–256. [Google Scholar]
- Feng, X.; Liu, T.; Wang, L.; Yu, Y.; Zhang, S.; Song, L. Investigation on JKR surface energy of high-humidity maize grains. Powder Technol. 2021, 382, 406–419. [Google Scholar] [CrossRef]
- Delaney, G.W.; Cleary, P.; Hilden, M.; Morrison, R.D. Testing the validity of the spherical DEM model in simulating real granular screening processes. Chem. Eng. Sci. 2012, 68, 215–226. [Google Scholar] [CrossRef]
- Davoodi, A.; Asbjörnsson, G.; Hulthén, E.; Evertsson, M. Application of the Discrete Element Method to Study the Effects of Stream Characteristics on Screening Performance. Minerals 2019, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Harzanagh, A.A.; Orhan, E.C.; Ergun, S.L. Discrete element modelling of vibrating screens. Miner. Eng. 2018, 121, 107–121. [Google Scholar] [CrossRef]
- Singiresu, S.R. Mechanical Vibrations, 5th ed.; Prentice Hall: Upper Saddle, NJ, USA, 2011; pp. 72–80. [Google Scholar]
- Zhang, Y.; Shi, D.; He, D.; Shao, D. Free Vibration Analysis of Laminated Composite Double-Plate Structure System with Elastic Constraints Based on Improved Fourier Series Method. Shock. Vib. 2021, 2021, 8811747. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Thornton, C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 2005, 160, 219–228. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Niu, L.; Xiong, X.; Dong, Z.; Tang, J. Research on Sieving Performance of Flip-Flow Screen Using Two-Way Particles-Screen Panels Coupling Strategy. IEEE Access 2019, 7, 124461–124473. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Zhou, Z.; Jun, H.; Wen, P.; Zhao, Y.; Duan, C.; Zhao, L.; Luo, Z.; Liu, C. Simultaneous multiple parameter optimization of variable-amplitude equal-thickness elastic screening of moist coal. Powder Technol. 2019, 346, 217–227. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, Y.; Duan, C.; Zhang, C.; Diao, H.; Wang, Z.; Fan, X. Properties of technological factors on screening performance of coal in an equal-thickness screen with variable amplitude. Fuel 2017, 188, 511–521. [Google Scholar] [CrossRef]
Intercepted Order M | M = 1 | M = 2 | M = 3 | M = 4 | M = 5 |
---|---|---|---|---|---|
Maximum amplitude (mm) | 23.23 | 28.10 | 28.79 | 29.37 | 29.88 |
RE (%) | 17.19 | 2.63 | 2.0 | 1.57 | 1.10 |
MSE | 13.06 | 0.99 | 0.59 | 0.40 | 0.20 |
Material Property | Poisson’s Ratio (-) | Shear Modulus (Pa) | Density (kg/m3) |
---|---|---|---|
Particle | 0.250 | 2.200 × 108 | 2456 |
Polyrethane | 0.499 | 1.157 × 106 | 1200 |
Steel | 0.300 | 7.692 × 1010 | 7850 |
Collision property | Coefficient of restitution | Coefficient of static friction | Coefficient of rolling friction |
Particle-particle | 0.50 | 0.154 | 0.10 |
Particle-polyrethane | 0.25 | 0.500 | 0.01 |
Particle-steel | 0.30 | 0.154 | 0.01 |
VFFS parameters | |||
Vibration parameter | The vibration frequency of 776 r/min, screen inclination of 15° | ||
Screen parameters | Screen length and width with 2624 and 650 mm, respectively | ||
Material properties | The total mass of 5.81 kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Geng, R.; Wang, X. A Numerical Study of Separation Performance of Vibrating Flip-Flow Screens for Cohesive Particles. Minerals 2021, 11, 631. https://doi.org/10.3390/min11060631
Yu C, Geng R, Wang X. A Numerical Study of Separation Performance of Vibrating Flip-Flow Screens for Cohesive Particles. Minerals. 2021; 11(6):631. https://doi.org/10.3390/min11060631
Chicago/Turabian StyleYu, Chi, Runhui Geng, and Xinwen Wang. 2021. "A Numerical Study of Separation Performance of Vibrating Flip-Flow Screens for Cohesive Particles" Minerals 11, no. 6: 631. https://doi.org/10.3390/min11060631
APA StyleYu, C., Geng, R., & Wang, X. (2021). A Numerical Study of Separation Performance of Vibrating Flip-Flow Screens for Cohesive Particles. Minerals, 11(6), 631. https://doi.org/10.3390/min11060631