Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Significance
2.2. Methodology
- −
- feed should contain a minimum of equally settling particles i.e., differentiated in terms of densimetric and granulometric properties,
- −
- the material must be homogeneous in terms of density distribution,
- −
- the feed material should be proceeded into narrow granular classes.
3. Experimental
3.1. Characteristics of Testing Device
3.2. Research Programme and Scope of Analyses
4. Results and Discussion
4.1. Laboratory Scale Tests
4.2. Semi-Plant Scale Tests
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heyduk, A.; Pielot, J. Economical Efficiency Assessment of an Application of On-line Feed Particle Size Analysis to the Coal Cleaning System in Jigs. Inżynieria Miner. J. Pol. Miner. Eng. Soc. 2014, 2, 217–228. [Google Scholar]
- Saramak, A.; Naziemiec, Z. Determination of dust emission level for various crushing devices. Min. Sci. 2019, 26, 45–54. [Google Scholar] [CrossRef]
- Saramak, A.; Naziemiec, Z.; Saramak, D. Analysis of noise emission for selected crushing devices. Min. Sci. 2016, 23, 145–154. [Google Scholar] [CrossRef]
- Ambróst, W. Jigging: A review of fundamentals and future directions. Minerals 2020, 10, 998. [Google Scholar] [CrossRef]
- Falconer, A. Gravity separation: Old technique/new methods. Phys. Sep. Sci. Eng. 2003, 12, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Biswajit Sarkar, B.; Sekhar, S.C.; Das, A. Advanced Gravity Separation; Singh, R., Das, A., Goswani, N.G., Eds.; NML: Jamshedpur, India, 2007; p. 831007. [Google Scholar]
- Boron, S.; Pielot, J.; Wojaczek, A. Coal cleaning in jig systems—Profitability assessment. Miner. Resour. Manag. 2014, 30, 67–82. [Google Scholar]
- Cierpisz, S. A dynamic model of coal products discharge in a jig. Miner. Eng. 2017, 105, 1–6. [Google Scholar] [CrossRef]
- Głowiak, S. Wpływ składu ziarnowego nadawy na skuteczność wzbogacania w osadzarce. In Proceedings of the XV APPK, Szczyrk, Poland, 2–4 June 2009; pp. 37–50. [Google Scholar]
- Gawenda, T. Zasady Doboru Kruszarek Oraz Układów Technologicznych w Produkcji Kruszyw Łamanych; Monography no. 304; AGH Publishing House: Cracow, Poland, 2015. [Google Scholar]
- Neumann, T.; Snoby, R.J.; Strangalies, W. The fractionized separation of impurities out of sand and small gravel with alljig-fine grain jigs. Aufbereit. Technik. 1995, 36, 562–567. [Google Scholar]
- Mesters, K.; Kurkowski, H. Density separation of recycling building materials by means of jig technology. Aufbereit. Technik. 1997, 38, 536–542. [Google Scholar]
- Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and entanglement factor. Miner. Eng. 2018, 129, 54–62. [Google Scholar] [CrossRef]
- Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Tabelin, C.B.; Hiroyoshi, N. Development of suitable product recovery systems of continuous hybrid jig for plastic-plastic separation. Miner. Eng. 2019, 141, 105839. [Google Scholar] [CrossRef]
- Cazacliu, B.; Sampaio, C.H.; Miltzarek, G.; Petter, C.; Le Guen, L.; Paranhos, R.; Huchet, F.; Kirchheim, A.P. The potential to using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, C.H.; Ambrós, W.M.; Miranda, L.R.; Gerson, L.; Miltzarek, G.M.; Kronbauer, M.A. Improve the quality of recycled aggregate concrete by sorting in air jig. In Proceedings of the III Progress of Recycling in the Built Environment, São Paulo, Brazil, 3–5 August 2015. [Google Scholar]
- Stempkowska, A.; Gawenda, T.; Naziemiec, Z.; Ostrowski, K.; Saramak, D.; Surowiak, A. Impact of the geometrical parameters of dolomite coarse aggregate on the thermal and mechanic properties of preplaced aggregate concrete. Materials 2020, 13, 4358. [Google Scholar] [CrossRef] [PubMed]
- Surowiak, A.; Gawenda, T.; Stempkowska, A.; Niedoba, T.; Nad, A. The Influence of Selected Properties of Particles in the Jigging Process of Aggregates on an Example of Chalcedonite. Minerals 2020, 10, 600. [Google Scholar] [CrossRef]
- Hori, K.; Tsunekawa, M.; Hiroyoshi, N.; Ito, M. Optimum water pulsation of jig separation for crushed plastic particles. Int. J. Miner. Process. 2009, 92, 103–108. [Google Scholar] [CrossRef]
- Dos Santos, I.L.; Frantz, L.V.; Masuero, A.B. Influence of hydraulic jigging of construction and demolition waste recycled aggregate on hardened concrete properties. Rev. IBRACON Estruturas Mater. 2021, 14, 14314. [Google Scholar] [CrossRef]
- Burt, R.O. Gravity Concentration Technology; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Ottley, D.J. Gravity Concentration In Modern Mineral Processing. In Mineral Processing at a Crossroads; Wills, B.A., Barley, R.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 117. [Google Scholar] [CrossRef]
- Naziemiec, Z.; Gawenda, T. Badanie procesu kruszenia z zamkniętym obiegiem. In Proceedings of the Kruszywa Mineralne 2007 Surowce—Rynek—Technologie—Jakość, Szklarska Poręba, Poland; 2007; pp. 107–116. [Google Scholar]
- Wills, B.A. Mineral Processing Technology, 6th ed.; Pergamo Press: Oxford, UK, 2006. [Google Scholar]
- Brożek, M.; Surowiak, A. Argument of separation at upgrading in the JIG. Arch. Min. Sci. Arch. Górnictwa 2010, 55, 21–40. [Google Scholar]
- Gawenda, T.; Saramak, D.; Nad, A.; Surowiak, A.; Krawczykowska, A.; Foszcz, D. Badania procesu uszlachetniania kruszyw w innowacyjnym układzie technologicznym. In Proceedings of the XIX Conference Kruszywa Mineralne Surowce—Rynek—Technologie—Jakość, Kudowa-Zdrój, Poland, 25–28 September 2019; pp. 65–76. [Google Scholar]
Number of Layer (Product) in the Jig | Settling Velocity, [m/s] | ||
---|---|---|---|
For Regular Particles | For Irregular Particles | Difference | |
I | 0.21 | 0.18 | 0.03 |
II | 0.20 | 0.16 | 0.04 |
III | 0.19 | 0.14 | 0.05 |
IV | 0.22 | 0.16 | 0.06 |
Parameter | Unit | Value |
---|---|---|
Maximum throughput | [kg/h] | 2750 |
Maximum water flow | [dm3/h] | 5500 |
Frequency of bellows pulsation | [1/s] | 0.8–1.2 |
Jump of bellows | [mm] | 50–140 |
Nominal power | [kW] | 4 |
Dimensions of sieves | [mm] | 150 × 2900 |
Test Number | Type of Material | Particle Size, [mm] | Regular Particles Content in Feed, [%] | Irregular Particles Content in Feed, [%] |
---|---|---|---|---|
I | gravel | 8–16 | 89 | 11 |
II | gravel | 8–16 | 100 | 0 |
III | gravel | 8–10 | 0 | 100 |
IV | gravel | 8–10 | 100 | 0 |
V | gravel | 6.3–8 | 0 | 100 |
VI | gravel | 6.3–8 | 100 | 0 |
Test Number | Density, [g/cm3] | |||
---|---|---|---|---|
Number of Layer in the Jig | ||||
I | II | III | IV | |
I | 2.67 | 2.66 | 2.66 | 2.63 |
II | 2.66 | 2.67 | 2.69 | 2.68 |
III | 2.64 | 2.64 | 2.63 | 2.61 |
IV | 2.74 | 2.66 | 2.65 | 2.62 |
V | 2.64 | 2.62 | 2.60 | 2.60 |
VI | 2.73 | 2.66 | 2.66 | 2.61 |
Test Number | Absorbablity, [%] | |||
---|---|---|---|---|
Number of Layer in the Jig | ||||
I | II | III | IV | |
I | 1.03 | 1.52 | 1.54 | 2.08 |
II | 1.27 | 1.71 | 1.74 | 1.91 |
III | 2.95 | 4.09 | 4.46 | 4.75 |
IV | 2.55 | 3.34 | 3.54 | 3.96 |
V | 2.97 | 3.21 | 3.47 | 4.05 |
VI | 0.97 | 1.85 | 2.22 | 2.51 |
Test Number | Average Absorbability, [%] | Average Density, [g/cm3] |
---|---|---|
I | 1.54 | 2.64 |
II | 1.65 | 2.68 |
III | 3.09 | 2.63 |
IV | 1.38 | 2.67 |
V | 3.38 | 2.61 |
VI | 1.80 | 2.67 |
Test Number | Layer of Product | Absorbability, [%] | Density, [g/cm3] |
---|---|---|---|
I | lower upper | 1.32 1.71 | 2.66 2.63 |
II | lower upper | 1.49 1.83 | 2.69 2.68 |
III | lower upper | 3.58 4.51 | 2.64 2.61 |
IV | lower upper | 3.18 3.81 | 2.68 2.62 |
V VI | lower upper lower upper | 2.26 3.67 1.26 2.20 | 2.63 2.61 2.70 2.61 |
Test Number | Layer of Product | Absorbability, [%] | Density, [g/cm3] |
---|---|---|---|
I | lower upper | 1.11 1.93 | 2.67 2.65 |
II | lower upper | 1.29 1.91 | 2.66 2.68 |
III | lower upper | 3.05 4.66 | 2.65 2.62 |
IV | lower upper | 2.49 3.88 | 2.75 2.66 |
V VI | lower upper lower upper | 2.89 3.49 0.68 2.12 | 2.66 2.60 2.73 2.65 |
Gravel Aggregate 10–14 mm | Los Angeles Index, LA [%] | Micro-Devala Index, MDE [%] |
---|---|---|
Raw material (typical) with 11% of irregular particles content | 36.7 category LA40 | 29.8 category MDE 30 |
Raw material without irregular particles | 31.9 category LA35 | 17.6 category MDE 20 |
Product enriched in SET device, without regular particles (low threshold) | 29.5 category LA30 | 9.8 category MDE 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawenda, T.; Saramak, D.; Stempkowska, A.; Naziemiec, Z. Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig. Minerals 2021, 11, 777. https://doi.org/10.3390/min11070777
Gawenda T, Saramak D, Stempkowska A, Naziemiec Z. Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig. Minerals. 2021; 11(7):777. https://doi.org/10.3390/min11070777
Chicago/Turabian StyleGawenda, Tomasz, Daniel Saramak, Agata Stempkowska, and Zdzisław Naziemiec. 2021. "Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig" Minerals 11, no. 7: 777. https://doi.org/10.3390/min11070777
APA StyleGawenda, T., Saramak, D., Stempkowska, A., & Naziemiec, Z. (2021). Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig. Minerals, 11(7), 777. https://doi.org/10.3390/min11070777