Spectroscopy and Microscopy of Corundum from Primary Deposits Found in Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microscopy
3.2. FTIR Spectroscopy
3.3. UV-Vis Spectroscopy
3.4. EDXRF
4. Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritsch, E.; Rossman, G.R. An update on color in gems. Part I. Introduction and colors caused by dispersed metal ions. Gems Gemol. 1987, 23, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Emmett, J.L.; Dubinsky, E.V.; Hughes, R.W.; Scarratt, K. Color, Spectra & Luminescence. In Ruby & Sapphire: A Gemmologist’s Guide; Hughes, R., Ed.; RWH Publishing: Bangkok, Thailand, 2017; pp. 90–148. [Google Scholar]
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A quantitative description of the causes of color in corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
- Simonet, C.; Fritsch, E.; Lasnier, B. A classification of gem corundum deposits aimed towards gem exploration. Ore Geol. Rev. 2008, 34, 127–133. [Google Scholar] [CrossRef]
- Schwarz, D.; Pardieu, V.; Saul, J.M.; Schmetzer, K.; Laurs, B.M.; Giuliani, G.; Klemm, L.; Malsy, A.-K.; Erel, E.; Hauzenberger, C.; et al. Rubies and sapphires from Winza, central Tanzania. Gems Gemol. 2008, 44, 322–347. [Google Scholar] [CrossRef] [Green Version]
- Kan-Nyunt, H.P.; Karampelas, S.; Link, K.; Thu, K.; Kiefert, L.; Hardy, P. Blue sapphires from the Baw Mar mine in Mogok. Gems Gemol. 2013, 49, 223–232. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, A.J. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Mineralogical Association of Canada Short Course Series; Groat, L.A., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 113–134. ISBN 9780921294375. [Google Scholar]
- Palke, A.C.; Breeding, C.M. The origin of needle-like rutile inclusions in natural gem corundum: A combined EMPA, LA-ICP-MS, and nanoSIMS investigation. Am. Mineral. 2017, 102, 1451–1461. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Karampelas, S.; Nishanbaev, T.R.; Nikandrov, S.N.; Semiannikov, B.S. Sapphire megacrysts in syenite pegmatites from the Ilmen Mountains, South Urals, Russia: New mineralogical data. Can. Mineral. 2017, 55, 823–843. [Google Scholar] [CrossRef]
- Sutherland, F. Sapphire, a not so simple gemstone. Am. Mineral. 2017, 102, 1373–1374. [Google Scholar] [CrossRef]
- Elmaleh, E.; Schmidt, S.T.; Karampelas, S.; Link, K.; Kiefert, L.; Süssenberger, A.; Paul, A. U-Pb Ages of Zircon Inclusions in Sapphires from Ratnapura and Balangoda (Sri Lanka) and Implications for Geographic Origin. Gems Gemol. 2019, 55, 18–28. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L. Geology of corundum and emeralds gem deposits: A review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef] [Green Version]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of blue sapphire. Gems Gemol. 2019, 55, 536–579. [Google Scholar] [CrossRef] [Green Version]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of ruby. Gems Gemol. 2019, 55, 580–612. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Rassomakhin, M.A.; Nikandrov, S.N.; Karampelas, S.; Kononkova, N.N.; Nikolaev, A.G.; Anosova, M.O.; Somsikova, A.V.; Kostitsyn, Y.A.; Kotlyarov, V.A. Origin of blue sapphire in newly discovered spinel–chlorite–muscovite rocks within meta-ultramafites of Ilmen mountains, South Urals of Russia: Evidence from mineralogy, geochemistry, Rb-Sr and Sm-Nd isotopic data. Minerals 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Filina, M.I.; Sorokina, E.S.; Botcharnikov, R.; Karampelas, S.; Rassomakhin, M.A.; Kononkova, N.N.; Nikolaev, A.G.; Berndt, J.; Hofmeister, W. Corundum anorthosites-kyshtymites from the South Urals, Russia: A combined mineralogical, geochemical, and U-Pb zircon geochronological study. Minerals 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, F.L.; Khin, Z.; Meffre, F.; Thompson, J.; Goemann, K.; Kyaw, T.; Than, T.N.; Mhod, Z.M.; Harris, S.I. Diversity in ruby chemistry and its inclusions: Intra and inter-continental comparisons from Myanmar and Eastern Australia. Minerals 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Groat, L.A.; Fallick, A.E.; Pignatelli, I.; Pardieu, V. Ruby Deposits: A Review and Geological Classification. Minerals 2020, 10, 597. [Google Scholar] [CrossRef]
- Palke, A.C. Coexisting rubies and blue sapphires from major world deposits: A brief review of their mineralogical properties. Minerals 2020, 10, 472. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Graham, I.; Giuliani, G.; Melfos, V.; Karampelas, S.; Karantoni, V.; Wang, K.; Tarantola, A.; Zaw, K.; et al. Gem Corundum Deposits of Greece: Geology, Mineralogy and Genesis. Minerals 2019, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P. The minerals of Eastern Macedonia and Western Thrace: Geological framework and environment of formation. Bull. Geol. Soc. Greece 2005, 37, 62–77. [Google Scholar]
- Voudouris, P.; Melfos, V.; Katerinopoulos, A. Precious Stones in Greece: Mineralogy and Geological Environment of Formation. Understanding the Genesis of Ore Deposits to Meet the Demand of the 21st Century. In Proceedings of the 12th Quadrennial IAGOD Symposium, Moscow, Russia, 21–24 August 2006. 6p. [Google Scholar]
- Voudouris, P.; Graham, I.; Melfos, V.; Zaw, K.; Lin, S.; Giuliani, G.; Fallick, A.; Ionescu, M. Gem corundum deposits of Greece: Diversity, Chemistry and Origins. In Proceedings of the 13th Quadrennial IAGOD Symposium, Adelaide, Australia, 6–9 April 2010; Volume 69, pp. 429–430. [Google Scholar]
- Graham, I.; Voudouris, P.; Melfos, V.; Zaw, K.; Meffre, S.; Sutherland, F.; Giuliani, G.; Fallick, A. Gem corundum deposits of Greece: A spectrum of compositions and origins. In Proceedings of the 34th IGC Conference, Brisbane, Australia, 5–10 August 2012. [Google Scholar]
- Wang, K.K.; Graham, I.T.; Lay, A.; Harris, S.J.; Cohen, D.R.; Voudouris, P.; Belousova, E.; Giuliani, G.; Fallick, A.E.; Greig, A. The origin of a new pargasite-schist hosted ruby deposit from Paranesti, Northern Greece. Can. Mineral. 2017, 55, 535–560. [Google Scholar] [CrossRef]
- Wang, K.K.; Graham, I.T.; Martin, L.; Voudouris, P.; Giuliani, G.; Lay, A.; Harris, S.J.; Fallick, A.E. Fingerprinting Paranesti Rubies through Oxygen Isotopes. Minerals 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Karampelas, S.; Kiefert, L. Gemstones and Minerals. In Analytical Archaeometry; Edwards, H., Vandenabeele, P., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 291–317. [Google Scholar]
- Groat, L.A.; Giulianni, G.; Stone-Sundberg, J.; Sun, Z.; Renfro, N.D.; Palke, A.C. A review of analytical methods used in geographic origin determination of gemstones. Gems Gemol. 2019, 55, 512–535. [Google Scholar] [CrossRef] [Green Version]
- Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Balan, E. Theoritical infrared spectra of OH defects in corundum (α-Al2O3). Eur. J. Mineral. 2020, 32, 457–467. [Google Scholar] [CrossRef]
- Smith, C.P.; Hartley, A.; Zellagui, R. Titanite (sphene) inclusions in ruby identified by infrared spectroscopy. J. Gemmol. 2020, 37, 11–12. [Google Scholar] [CrossRef]
- Smith, C.P.; Zellagui, R. Vesuvianite (idiocrase) and apatite inclusions in ruby identifiable by infrared spectroscopy. J. Gemmol. 2020, 37, 346–348. [Google Scholar] [CrossRef]
- Smith, C.P. A contribution to understanding the infrared spectra of rubies from Mong Hsu, Myanmar. J. Gemmol. 1995, 24, 321–335. [Google Scholar] [CrossRef]
- Besson, G.; Drifts, V.A. Refined relationships between chemical composition of dioctrahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the OH stretching bands. Clays Clay Miner. 1997, 45, 158–169. [Google Scholar] [CrossRef]
- Phan, T.M.D. Internal Characteristics, Chemical Compounds and Spectroscopy of Sapphire as Single Crystals. Ph.D. Thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2015; p. 140. [Google Scholar]
- McClure, D.S. Optical spectra of transition-metal ions in corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Ferguson, J.; Fielding, P.E. The origins of the colours of natural yellow, green, and blue sapphires. Chem. Phys. Lett. 1971, 10, 262–265. [Google Scholar] [CrossRef]
- Krebs, J.J.; Maisch, W.G. Exchange effects in the optical absorption spectrum of Fe3+ in Al2O3. Phys. Rev. B 1971, 4, 757–769. [Google Scholar] [CrossRef]
- Eigenmann, K.; Kunz, K.; Gunthard, H. The optical spectrum of a-Al2O3:Fe3+. Chem. Phys. Lett. 1972, 13, 54–57. [Google Scholar] [CrossRef]
- Schmetzer, K. Zur Deutung der Farbursache blauer Saphire—Eine Diskussion. Neues Jahrb. Fur. Mineral. Mon. 1987, 8, 337–343. [Google Scholar]
- Fritsch, E.; Rossman, G.R. An update on color in Gems Part II. Colors involving multiple atoms and color centers. Gems Gemol. 1988, 24, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Townsend, M.G. Visible charge transfer band in blue sapphire. Solid State Commun. 1968, 6, 81–83. [Google Scholar] [CrossRef]
- Mattson, S.M.; Rossman, G.R. Fe2+-Ti4+ charge transfer in stoichiometric Fe2+,Ti4+-minerals. Phys. Chem. Miner. 1988, 16, 78–82. [Google Scholar] [CrossRef]
- Moon, A.R.; Phillips, M.R. Defect clustering and color in Fe,Ti:a-Al2O3. J. Am. Ceram. Soc. 1994, 77, 356–357. [Google Scholar] [CrossRef]
- Fritsch, E.; Rondeau, B.; Devouard, B.; Pinsault, L.; Latouche, C. Why are some crystals gem quality? Crystal growth considerations on the “gem factor”. Can. Mineral. 2017, 55, 521–533. [Google Scholar] [CrossRef]
- Liati, A.; Seidel, E. Metamorphic evolution and geochemistry of kyanite eclogites in central Rhodope, Northern Greece. Contrib. Mineral. Petrol. 1996, 123, 293–307. [Google Scholar] [CrossRef]
- White, J.S. Boehmite exsolution in corundum. Am. Mineral. 1979, 64, 485–491. [Google Scholar]
- Haas, H. Diaspore-corundum equilibria determined by epitaxis of diaspore on corundum. Am. Mineral. 1972, 57, 1375–1385. [Google Scholar]
- Hänni, H. Origin determination of gemstones: Possibilities, restrictions and reliability. J. Gemmol. 1994, 24, 139–148. [Google Scholar] [CrossRef]
- Smith, C.P. Inside sapphires. Rapp. Mag. 2010, 33, 123–132. [Google Scholar]
- Smith, G. Evidence for absorption by exchange-coupled Fe2+–Fe3+ pairs in the near infrared spectra of minerals. Phys. Chem. Miner. 1978, 3, 375–383. [Google Scholar] [CrossRef]
Region | Sample | TiO2 | Cr2O3 | Fe2O3 | Ga2O3 |
---|---|---|---|---|---|
Paranesti | DR1a | 0.0131 | 0.1107 | 0.3058 | 0.0031 |
0.0052 | 0.1173 | 0.3049 | 0.0034 | ||
PARa | 0.0709 | 0.0639 | 0.4192 | 0.0028 | |
0.0414 | 0.0598 | 0.4509 | 0.0029 | ||
0.0686 | 0.0685 | 0.3883 | 0.0036 | ||
0.0206 | 0.1213 | 0.5461 | 0.0038 | ||
Gorgona | GO5a | 0.0522 | Bdl | 0.1503 | 0.0103 |
0.0421 | Bdl | 0.1785 | 0.0130 | ||
0.6030 | 0.0311 | 0.1449 | 0.0085 | ||
0.0144 | 0.0255 | 0.1404 | 0.0099 | ||
0.0224 | Bdl | 0.0340 | 0.0051 | ||
0.0261 | Bdl | 0.0128 | 0.0085 | ||
GORa | 0.0449 | Bdl | 0.1210 | 0.0037 | |
0.0662 | Bdl | 0.1015 | 0.0042 | ||
0.1099 | Bdl | 0.9721 | 0.0043 | ||
0.1020 | Bdl | 1.4414 | 0.0040 | ||
Ikaria | IK1b | 0.1696 | 0.0453 | 0.4464 | 0.0093 |
0.1787 | 0.0357 | 0.4953 | 0.0112 | ||
0.2138 | 0.0242 | 0.6561 | 0.0106 | ||
Naxos | NX1a | 0.3713 | Bdl | 0.3288 | 0.0077 |
0.6065 | Bdl | 0.3277 | 0.0094 | ||
0.4614 | Bdl | 0.3230 | 0.0084 | ||
0.3817 | Bdl | 0.3470 | 0.0092 | ||
0.3816 | Bdl | 0.3356 | 0.0080 | ||
0.2263 | Bdl | 0.3943 | 0.0074 | ||
NX2a | 0.0202 | Bdl | 0.5567 | 0.0108 | |
0.1030 | Bdl | 0.6028 | 0.0077 | ||
0.0471 | Bdl | 0.6365 | 0.0073 | ||
Bdl | Bdl | 0.4996 | 0.089 | ||
NX4a | Bdl | Bdl | 0.5094 | 0.075 | |
0.0580 | Bdl | 0.5980 | 0.0078 | ||
0.0974 | Bdl | 0.7216 | 0.0117 |
Region | Sample | Polysynthetic Twinning | Parting | Color Zoning | Fractures |
---|---|---|---|---|---|
Paranesti | DR1a | + | + | + | + |
PARa | + | + | + | + | |
Gorgona | GO5a | + | + | + | + |
GORa | + | + | + | + | |
Ikaria | IK1b | - | + | + | + |
NX1a | + | - | + | + | |
Naxos | NX2a | + | + | + | + |
NX4a | - | + | + | + |
Region | Sample | Biotite | White Mica | Chlorite | Kyanite | Zircon | Allanite | Rutile | Opaque Minerals |
---|---|---|---|---|---|---|---|---|---|
Paranesti | DR1a | - | - | + | - | - | - | - | - |
PARa | - | - | - | - | - | - | - | - | |
Gorgona | GO5a | - | - | - | - | - | + | - | + |
GORa | - | - | - | + | - | - | - | + | |
Ikaria | IK1b | + | + | + | - | - | - | - | + |
Naxos | NX1a | + | - | - | - | + | - | - | + |
NX2a | + | - | - | - | - | - | + | - | |
NX4a | + | - | + | - | - | - | - | - |
Region | Sample | “Cut off” UV Region | “Shoulder” UV Region | 377/450 Fe3+-Fe3+ | 388 Fe3+ | 580/700 Fe2+-Ti4+ | 405/560 Cr3+ |
---|---|---|---|---|---|---|---|
Paranesti | DR1a | 295 | 335 | Weak | Weak | - | Medium |
PARa | 305 | 335 | Weak | Weak | - | Medium | |
Gorgona | GO5a | 310 | - | Weak | Weak | Weak? | Weak |
GORa | 295 | 325 | Weak | Weak | Medium | - | |
Ikaria | IK1b | 300 | 335 | Weak | Weak | Strong | - |
Naxos | NX1a | 330 | - | Weak | Weak | Weak | - |
NX2a | 300 | 335 | Weak | Weak | Strong | - | |
NX4a | 300 | 335 | Weak | Weak | Medium | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karantoni, V.; Karampelas, S.; Voudouris, P.; Melfos, V.; Papadopoulou, L.; Soldatos, T.; Mavrogonatos, C. Spectroscopy and Microscopy of Corundum from Primary Deposits Found in Greece. Minerals 2021, 11, 750. https://doi.org/10.3390/min11070750
Karantoni V, Karampelas S, Voudouris P, Melfos V, Papadopoulou L, Soldatos T, Mavrogonatos C. Spectroscopy and Microscopy of Corundum from Primary Deposits Found in Greece. Minerals. 2021; 11(7):750. https://doi.org/10.3390/min11070750
Chicago/Turabian StyleKarantoni, Vilelmini, Stefanos Karampelas, Panagiotis Voudouris, Vasilios Melfos, Lambrini Papadopoulou, Triantafyllos Soldatos, and Constantinos Mavrogonatos. 2021. "Spectroscopy and Microscopy of Corundum from Primary Deposits Found in Greece" Minerals 11, no. 7: 750. https://doi.org/10.3390/min11070750
APA StyleKarantoni, V., Karampelas, S., Voudouris, P., Melfos, V., Papadopoulou, L., Soldatos, T., & Mavrogonatos, C. (2021). Spectroscopy and Microscopy of Corundum from Primary Deposits Found in Greece. Minerals, 11(7), 750. https://doi.org/10.3390/min11070750