Halogens in Eclogite Facies Minerals from the Western Gneiss Region, Norway
Abstract
:1. Introduction
2. Geological Setting
3. Sample Locations and Petrography
3.1. Årsheimneset Samples
3.2. Svartberget Samples
3.3. Multi-Phase Solid Inclusions (MPIs)
3.3.1. Garnet-Hosted Inclusions
3.3.2. Omphacite-Hosted Inclusions
4. Analytical Methods
4.1. Sample Selection and Irradiation
4.2. Noble Gas Mass Spectrometry
4.3. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
4.4. Electron-Probe Micro-Analysis (EPMA)
4.5. Raman Spectroscopy
4.6. Microthermometry
4.7. Bulk Rock Calculations
5. Results
5.1. Bulk Rock Chemistry
5.2. Fluorine and Chlorine in Hydrous Mineral Phases
5.3. NI-NGMS Halogens
5.4. Halogen Distribution
5.5. Eclogite Facies Fluid Inclusions
6. Discussion
6.1. Protoliths and Metasomatism
6.2. Fluid Inclusion vs. Lattice-Bound Halogens
6.3. Fractionation of F and Cl between Minerals and Fluid
6.4. Halogen Content of Eclogite Fluids
6.5. Halogen Fractionation through Metamorphic and UHP Metasomatic Processes
6.6. Halogen Systematics of Fluids in Subducted Crust and Mantle Metasomatism
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau, H.; Foy, E.; Raepsaet, C.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells. Geochim. Cosmochim. Acta 2010, 74, 3839–3850. [Google Scholar] [CrossRef]
- Bernini, D.; Wiedenbeck, M.; Dolejs, D.; Keppler, H. Partitioning of halogens between mantle minerals and aqueous fluids: Implications for the fluid flow regime in subduction zones. Contrib. Mineral. Petrol. 2013, 165, 117–128. [Google Scholar] [CrossRef]
- Fabbrizio, A.; Stalder, R.; Hametner, K.; Gunther, D. Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions. cells. Geochim. Cosmochim. Acta 2013, 121, 684–700. [Google Scholar] [CrossRef] [Green Version]
- Joachim, B.; Pawley, A.; Lyon, I.; Marquardt, K.; Henkel, T.; Clay, P.; Ruzie, L.; Burgess, R.; Ballentine, C.J. Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem. Geol. 2015, 416, 65–78. [Google Scholar] [CrossRef]
- Bureau, H.; Auzende, A.L.; Marocchi, M.; Raepsaet, C.; Munsch, P.; Testemale, D.; Mezouar, M.; Kubsky, S.; Carriere, M.; Ricolleau, A.; et al. Modern and past volcanic degassing of iodine. Geochim. Cosmochim. Acta 2016, 173, 114–125. [Google Scholar] [CrossRef]
- Schilling, J.G.; Bergeron, M.B.; Evans, R. Halogens in the mantle beneath the North Atlantic. Philos. Trans. R. Soc. A 1980, 297, 147–178. [Google Scholar]
- Ito, E.; Harris, D.M.; Anderson, T. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 1983, 47, 1613–1624. [Google Scholar] [CrossRef]
- Jambon, A.; Déruelle, B.; Dreibus, G.; Pineau, F. Chlorine and bromine abundance in MORB: The contrasting behavior of the Mid- Atlantic Ridge and East Pacific Rise and implictaions for chlorine geodynamic cycle. Chem. Geol. 1995, 126, 101–117. [Google Scholar] [CrossRef]
- Kendrick, M. High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem. Geol. 2012, 292–293, 116–126. [Google Scholar] [CrossRef]
- Ruzié-Hamilton, L.; Clay, P.; Burgess, R.; Joachim, B.; Ballentine, C.; Turner, G. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chem. Geol. 2016, 437, 77–87. [Google Scholar] [CrossRef]
- Sumino, H.; Burgess, R.; Mizukami, T.; Wallis, S.; Holland, G.; Ballentine, C. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet. Sci. Lett. 2010, 294, 163–172. [Google Scholar] [CrossRef]
- Kendrick, M.; Kamenetsky, V.; Phillips, D.; Honda, M. Halogen systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: A Macquarie Island case study. Geochim. Cosmochim. Acta 2012, 81, 82–93. [Google Scholar] [CrossRef]
- Kendrick, M.; Honda, M.; Pettke, T.; Scambelluri, M.; Phillips, D.; Giuliani, A. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 2013, 365, 86–96. [Google Scholar] [CrossRef]
- Kendrick, M.; Jackson, M.; Hauri, E.; Phillips, D. The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth Planet. Sci. Lett. 2015, 410, 197–209. [Google Scholar] [CrossRef]
- Kendrick, M.; Honda, M.; Vanko, D. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: Implications for oceanic hydrothermal root zones and global volatile cycles. Contrib. Mineral. Petrol. 2015, 170, 1–20. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sumino, H.; Nagao, K.; Ishimaru, S.; Arai, S.; Yoshikawa, M.; Kawamoto, T.; Kumagai, Y.; Kobayashi, T.; Burgess, R.; et al. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge. Earth Planet. Sci. Lett. 2017, 457, 106–116. [Google Scholar] [CrossRef]
- Hughes, L.; Burgess, R.; Chavrit, D.; Pawley, A.; Tartèse, R.; Droop, G.; Ballentine, C.J.; Lyon, I. Halogen behaviour in subduction zones: Eclogite facies rocks from the Western and Central Alps. Geochim. Cosmochim. Acta 2018, 243, 1–23. [Google Scholar] [CrossRef]
- Kendrick, M.; Scambelluri, M.; Hermann, J.; Padrón-Navarta, J.A. Halogens and noble gases in serpentinites and secondary peridotites: Implications for seawater subduction and the origin of mantle neon. Geochim. Cosmochim. Acta 2018, 235, 285–304. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Kohlstedt, D.L. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. Earth Planet. Sci. Lett. 2000, 105, 21457–21469. [Google Scholar] [CrossRef]
- McGovern, P.J.; Schubert, G. Thermal evolution of the Earth—Effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 1989, 96, 27–37. [Google Scholar] [CrossRef]
- Broadley, M.W.; Barry, P.H.; Ballentine, C.J.; Taylor, L.A.; Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 2018, 11, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Straub, S.M.; Layne, G.D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochim. Cosmochim. Acta 2003, 67, 4179–4203. [Google Scholar] [CrossRef]
- Gee, D.G.; Juhlin, C.; Pascal, C.; Robinson, P. Collisional Orogeny in the Scandinavian Caledonides (COSC). Geol. fören. Stockh. förh. 2010, 132, 29–44. [Google Scholar] [CrossRef]
- Stephens, M.B.; Gustavson, M.; Ramberg, I.B.; Zachrisson, E. The Caledonides of central-north Scandinavia—A tectonostratigraphic overview. In The Caledonide Orogen—Scandinavia and Related Areas; Gee, D.G., Sturt, B.A., Eds.; Wiley: New York, NY, USA, 1985; pp. 135–162. [Google Scholar]
- Stephens, M.B.; Gee, D.G. Terranes and polyphase accretionary history in the Scandinavian Caledonides. Geol. Soc. Am. Spec. Pap. 1989, 230, 17–30. [Google Scholar]
- Roberts, D. The Scandinavian Caledonides: Event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics 2003, 365, 283–299. [Google Scholar] [CrossRef]
- Nordgulen, Ø.; Barnes, C.G.; Yoshinobu, A.S.; Frost, C.; Prestvik, T.; Austrheim, H.; Anderson, H.S.; Marko, W.T.; McArthur, K. Pre-Scandian tectonic and magmatic evolution of the Helgeland Nappe Complex, Uppermost Allochthon. In Proceedings of the International Geological Congress, Oslo, Norway, 6–14 August 2008; p. 77. [Google Scholar]
- Terry, M.P.; Robinson, P. Geometry of eclogite facies structural features: Implications for production and exhumation of UHP and HP rocks, Western Gneiss Region, Norway. Tectonics 2004, 23, TC2001. [Google Scholar] [CrossRef]
- Hacker, B.R.; Gans, P.B. Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides. Geol. Soc. Am. Bull 2005, 117, 117–134. [Google Scholar] [CrossRef]
- Smith, D.C. Coesite in clinopyroxene in the Caledonides and its implication for geodynamics. Nature 1984, 310, 641–644. [Google Scholar] [CrossRef]
- Bergstrom, J.; Gee, D.G. The Cambrian in Scandinavia. In The Caledonide Orogen—Scandinavia and Related Areas; Gee, D.G., Sturt, B.A., Eds.; Wiley: New York, NY, USA, 1985; pp. 247–271. [Google Scholar]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Mattinson, J.M. Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway. Earth Planet. Sci. Lett. 2008, 272, 531–540. [Google Scholar] [CrossRef]
- Cuthbert, S.J.; Carswell, D.A.; Krogh-Ravna, E.J.; Wain, A. Eclogites and eclogites in the Western Gneiss region, Norwegian Caledonides. Lithos 2000, 52, 165–195. [Google Scholar] [CrossRef]
- Robinson, P. Extension of Trollheimen tectonostratigraphic sequence in deep synclines near Molde and Brattvåg, Western Gneiss Region, southern Norway. Norw. J. Geol. 1995, 75, 181–197. [Google Scholar]
- Walczak, K.; Cuthbert, S.; Kooijman, E.; Majka, J.; Smit, M.A. U–Pb zircon age dating of diamond-bearing gneiss from Fjørtoft reveals repeated burial of the Baltoscandian margin during the Caledonian Orogeny. Geol. Mag. 2019, 156, 1949–1964. [Google Scholar] [CrossRef] [Green Version]
- Hacker, B.R.; Andersen, T.; Johnston, S.; Kylander-Clark, A.R.C.; Peterman, E.M.; Walsh, E.O.; Young, D. High-temperature deformation during continental-margin subduction & exhumation: The ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 2010, 480, 149–171. [Google Scholar]
- Jamtveit, B.; Bucher-Nurminen, K.; Austrheim, H. Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, western Norway. Contrib. Mineral. Petrol. 1990, 104, 184–193. [Google Scholar] [CrossRef]
- Root, D.B.; Hacker, B.R.; Gans, P.B.; Ducea, M.N.; Eide, E.A.; Mosenfelder, J.L. Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: Implications for formation and exhumation. J. Metamorph. Geol. 2005, 23, 45–61. [Google Scholar] [CrossRef]
- Krogh, T.E.; Mysen, B.O.; Davis, G.L. A Paleozoic Age for the Primary Minerals of a Norwegian Eclogite, Annual Report of the Geophysical Laboratory; Carnegie Institute: Washington, DC, USA, 1974; Volume 73, pp. 575–576. [Google Scholar]
- Griffin, W.L.; Brueckner, H.K. REE, Rb–Sr and Sm–Nd studies of Norwegian eclogites. Chem. Geol. 1985, 52, 249–271. [Google Scholar] [CrossRef]
- Brueckner, H.K. The great eclogite debate of the Western Gneiss Region, Norwegian Caledonides: The in situ crustal v. exotic mantle origin controversy. J. Metamorph. Geol. 2018, 36, 517–527. [Google Scholar] [CrossRef]
- Robinson, P.; Roberts, D.; Gee, D.G.; Solli, A. A major synmetamorphic Early Devonian thrust and extensional fault system in the mid-Norway Caledonides: Relevance to exhumation of HP and UHP rocks. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Special Publication No. 390; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society of London: London, UK, 2014; pp. 241–270. [Google Scholar]
- Young, D.J. Structure of the (ultra)high-pressure Western Gneiss Region, Norway: Imbrication during Caledonian continental margin subduction. Geol. Soc. Am. Bull. 2018, 130, 926–994. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Carswell, D.A.; Griffin, W.L.; Medaris, L.G.; Van Roermund, H.L.M.; Cuthbert, S.J. The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation. Lithos 2010, 117, 1–19. [Google Scholar] [CrossRef]
- Austrheim, H.; Corfu, F.; Bryhni, I.; Andersen, T.B. The Proterozoic Hustad igneous complex: A low strain enclave with a key to the history of the Western Gneiss Region of Norway. Precambrian Res. 2003, 120, 149–175. [Google Scholar] [CrossRef]
- Jamtveit, B. Metamorphic evolution of the Eiksundal eclogite complex, Western Norway, and some tectonic implications. Contrib. Mineral. Petrol. 1987, 95, 82–99. [Google Scholar] [CrossRef]
- Mørk, M.B.E. A gabbro to eclogite transition on Flemsøy, Sunnmøre, western Norway. Chem. Geol. 1985, 50, 283–310. [Google Scholar] [CrossRef]
- Krabbendam, M.; Wain, A. Late-Caledonian structures, differential retrogression and structural position of (ultra)high-pressure rocks in the Nordfjord—Stadlandet area, Western Gneiss Region. Norges Geologiske Undersøkelse Bulletin 1997, 432, 27–139. [Google Scholar]
- Cuthbert, S. Petrology and Tectonic Setting of Relatively Low Temperature Eclogites and Related Rocks in the Dalsfjord Area, Sunnfjord, West Norway. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 1985, unpublished. [Google Scholar]
- Cuthbert, S. Exploratory modelling of common crustal rock densities at ambient eclogite facies P-T conditions and some natural examples in a giant UHP terrain: Implications for buoyancy and collision tectonics. In Proceedings of the 13th International Eclogite Conference, Petrozavodsk, Russia, 24–27 June 2019; Mattinson, C., Castelli, D., Faryad, S.W., Gilotti, J., Godard, G., Perchuk, A., Rubatto, D., Schertl, H.P., Tsujimori, T., Zheng, Y.F., Eds.; KRC RAS: Petrozavodsk, Russia, 2019; Volume 23, ISBN 978-5-9274-0854-2. [Google Scholar]
- Engvik, A.K.; Austrheim, A.; Andersen, T. Structural, mineralogical and petrophysical effects on deep crustal rocks of fluid-limited polymetamorphism, Western Gneiss Region, Norway. J. Geol. Soc. 2000, 157, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Wain, A.L.; Waters, D.J.; Austrheim, H. Metastability of granulites and processes of eclogitisation in the UHP region of western Norway. J. Metamorph. Geol. 2001, 19, 609–625. [Google Scholar] [CrossRef]
- Krogh, E.J. Metamorphic evolution of Norwegian country-rock eclogites deduced from mineral inclusions and compositional zoning in garnets. Lithos 1982, 15, 305–321. [Google Scholar] [CrossRef]
- Konrad-Schmolke, M.; O’Brien, P.J.; de Capitani, C.; Carswell, D.A. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 2008, 103, 309–332. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Johnson, C.M.; Beard, B.L.; Mahlen, N.J.; Lapen, T.J. Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem. Geol. 2007, 242, 137–154. [Google Scholar] [CrossRef]
- Andersen, T.; Burke, E.A.J.; Austrheim, H. Nitrogen-bearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonides. Contrib. Mineral. Petrol. 1989, 103, 153–165. [Google Scholar] [CrossRef]
- Andersen, T.; Austrheim, H.; Burke, E.A.J. Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W. Norway. Mineral. Mag. 1990, 54, 145–158. [Google Scholar] [CrossRef]
- Andersen, T.; Austrheim, H.; Burke, E.A.J.; Elvevold, S. N2 and CO2 in deep crustal fluids: Evidence from the Caledonides of Norway. Chem. Geol. 1993, 8, 113–132. [Google Scholar] [CrossRef]
- Svensen, H.; Jamtveit, B.; Yardley, B.W.D.; Engvik, A.K.; Austrheim, H.; Broman, C. Lead and bromine enrichment in eclogite-facies fluids: Extreme fractionation during lower-crustal hydration. Geology 1999, 27, 467–470. [Google Scholar] [CrossRef]
- Svensen, H.; Jamtiveit, B.; Banks, D.A.; Austrheim, H. Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J. Metamorph. Geol. 2001, 19, 165–178. [Google Scholar] [CrossRef]
- Carswell, D.A.; Harvey, M.A.; Al-Samman, A. The petrogenesis of contrasting Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bull. Minéral 1983, 106, 727–750. [Google Scholar] [CrossRef]
- Reverdatto, V.V.; Selyatitskiy, A.Y.; Carswell, D.A. Geochemical distinctions between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes. Russ. Geol. Geophys. 2008, 49, 73–90. [Google Scholar] [CrossRef]
- Quas-Cohen, A. Norwegian Orthopyroxene Eclogites: Petrogenesis and Implications for Metasomatism and Crust-Mantle Interactions During Subduction of Continental Crust. Ph.D. Thesis, Manchester University, Manchester, UK, 2014, unpublished. [Google Scholar]
- Vrijmoed, J.C.; Austrheim, H.; John, T.; Hin, R.C.; Corfu, F.; Davies, G.R. Metasomatism in the Ultrahigh-pressure Svartberget Garnet-peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-derived Fluids within the Mantle. J. Petrol. 2013, 54, 1815–1848. [Google Scholar] [CrossRef] [Green Version]
- Carswell, D.A.; van Roermund, H.L.M.; Wiggers Devries, D.F. Scandian ultrahigh-pressure metamorphismof Proterozoic basement rocks on Fjørtoft and Otrøy, Western Gneiss Region, Norway. Int. Geol. Rev. 2006, 48, 957–977. [Google Scholar] [CrossRef]
- Eskola, P. On the eclogites of Norway. Skr. Vidensk. Selsk. Christiania, Mat-Naturv., Kl. 1921, 18, 1–118. [Google Scholar]
- Lappin, M.A.; Smith, D.C. Mantle-equilibrated orthopyroxene eclogite pods from the basal gneisses in the Selje District, Western Norway. J. Petrol. 1978, 19, 530–584. [Google Scholar] [CrossRef]
- Lappin, M.A.; Smith, D.C. Carbonate, silicate and fluid relationships in eclogites, Selje district and environs, SW Norway. Earth Environ. Sci. Trans. R. Soc. Edinb. 1981, 72, 171–193. [Google Scholar] [CrossRef]
- Carswell, D.A.; Cuthbert, S.J. Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway. In Ultrahigh Pressure Metamorphism; European Mineralogical Union Notes in Mineralogy; Carswell, D.A., Compagnoni, R., Eds.; Eotvos University Press: Budapest, Hungary, 2003; Volume 5, pp. 51–73. [Google Scholar]
- Cuthbert, S.J. Trondhjemite veins in eclogite from the Western Gneiss Region, Norwegian Caledonides; Evidence for partial melting. Sci. Bull. 1995, 40, 103–104. [Google Scholar]
- Labrousse, L.; Jolivent, L.; Agard, P.; Hebert, R.; Andersen, T. Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP Province of Western Norway. Terra Nova 2002, 14, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Krogh, T.E.; Kamo, S.L.; Robinson, P.; Terry, M.P.; Kwok, K. U-Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss Region, Norway:14-20 million years between eclogite crystallization and return to amphibolite-facies conditions. Can. J. Earth Sci. 2011, 48, 441–447. [Google Scholar] [CrossRef]
- Mørk, M.B.E.; Mearns, E.W. Sm-Nd isotopic systematics of a gabbro-eclogite transition. Lithos 1986, 19, 255–267. [Google Scholar] [CrossRef]
- Beckman, V.; Moller, C.; Soderlund, U.; Corfu, F.; Pallon, J.; Chamberlain, K.R. Metamorphic zircon formation at the transition from gabbro to eclogite in Trollheimen–Surnadalen, Norwegian Caledonides. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Special Publications, 390; Corfu, F., Gasser, D., Chew, D.M., Eds.; Geological Society: London, UK, 2014; pp. 403–424. [Google Scholar]
- Jamtveit, B. Magmatic and metamorphic controls on chemical variations within the Eiksunddal eclogite complex, Sunnmøre, western Norway. Lithos 1987, 20, 369–389. [Google Scholar] [CrossRef]
- Vrijmoed, J.C.; van Roermund, H.L.M.; Davies, G.R. Evidence for diamond-grade ultra-high pressure metamorphism and fluid interaction in the Svartberget Fe-Ti garnet peridotite-websterite body, Western Gneiss Region, Norway. Mineral. Petrol. 2006, 88, 381–405. [Google Scholar] [CrossRef] [Green Version]
- Wain, A. New evidence for coesite in eclogite and gneisses: Defining an ultrahigh-pressure province in the Western Gneiss region of Norway. Geology 1997, 25, 927–930. [Google Scholar] [CrossRef]
- Vrijmoed, J.C.; Smith, D.C.; Van Roermund, H.L.M. Raman confirmation of microdiamond in the Svartberget Fe–Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova 2008, 20, 295–301. [Google Scholar] [CrossRef]
- Agrinier, P.; Javoy, M.; Smith, D.C.; Pineau, F. Carbon and oxygen isotopes in eclogites, amphibolites, veins and marbles from the Western Gneiss Region, Norway. Chem. Geol. 1985, 52, 145–162. [Google Scholar] [CrossRef]
- Spandler, C.; Hermann, J. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos 2006, 89, 135–153. [Google Scholar] [CrossRef]
- Griffin, W.L.; Brueckner, H.K. Caledonian Sm-Nd ages and a crustal origin for Norwegian eclogites. Nature 1980, 285, 319–321. [Google Scholar] [CrossRef]
- Lappin, M.A.; Pidgeon, R.T.; van Breemen, O. Geochronology of basal gneisses and mangerite syenites of Stadlandet, west Norway. Nor. J. Geol. 1979, 59, 161–181. [Google Scholar]
- Frezzotti, M.L.; Ferrando, S. The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am. Mineral. 2015, 100, 352–377. [Google Scholar] [CrossRef]
- Rielli, A.; Tomkins, A.G.; Nebel, O.; Brugger, J.; Etschmann, B.; Paterson, D. Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction. Sci. Rep. 2018, 8, 16411. [Google Scholar] [CrossRef]
- Stuart, F.; Turner, G.; Taylor, R. He-Ar isotope systematics of fluid inclusions: Resolving mantle and crustal contributions to hydrothermal fluids. In Noble Gas Geochemistry and Cosmochemistry; Matsuda, J., Ed.; Terra Scientific Publishing Company: Tokyo, Japan, 1994; pp. 261–277. [Google Scholar]
- Henkel, T.; Tizard, J.; Blagburn, D.; Lyon, I.C. Interstellar dust laser explorer (IDLE): A new instrument for submicron analyses of stardust—Quantification of laser SNMS. Appl. Surf. Sci. 2006, 252, 7117–7119. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Deruelle, B.; Dreibus, G.; Jambon, A. Iodine abundances in oceanic basalts: Implications for Earth dynamics. Earth Planet. Sci. Lett. 1992, 108, 217–227. [Google Scholar] [CrossRef]
- Li, Y. A brief discussion on the mean oceanic residence time of elements. Geochim. Cosmochim. Acta 1982, 46, 2671–2675. [Google Scholar] [CrossRef]
- Kastner, M.; Elderfield, H.; Martin, J.B.; Suess, E.; Kvenvolden, K.A.; Garrison, R.E. Diagenesis and interstitial-water chemistry at the Peruvian continental margin—Major constituents and strontium isotopes. In Proceedings for Ocean Drilling Program Scientific Results 112; Suess, E., von Huene, R., Eds.; Ocean Drilling Program: College Station, TX, USA, 1990; pp. 413–440. [Google Scholar] [CrossRef]
- Martin, J.B.; Gieskes, J.M.; Torres, M.; Kastner, M. Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochim. Cosmochim. Acta 1993, 57, 4377–4389. [Google Scholar] [CrossRef]
- Fehn, U.; Lu, Z.; Tomaru, H. Data report: 129I/I ratios and halogen concentrations in pore water of the Hydrate Ridge and their relevance for the origin of gas hydrates: A progress report. 24/32. In Proceedings for Ocean Drilling Program Scientific Results 204; Tréhu, A.M., Bohrmann, G., Torres, M.E., Colwell, F.S., Eds.; Ocean Drilling Program: College Station, TX, USA, 2006; pp. 1–25. [Google Scholar] [CrossRef]
- Muramatsu, Y.; Doi, T.; Tomaru, H.; Fehn, U.; Takeuchi, R.; Matsumoto, R. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates. J. Appl. Geochem. 2007, 22, 534–556. [Google Scholar] [CrossRef]
- Johnson, L.H.; Burgess, R.; Turner, G.; Milledge, H.J.; Harris, J.W. Noble gas and halogen geochemistry of mantle fluids: Comparison of African and Canadian diamonds. Geochim. Cosmochim. Acta 2000, 64, 717–732. [Google Scholar] [CrossRef]
- Langmuir, C.; Vocke, R.; Hanson, G.; Hart, S. A general mixing equation with applications to Icelandic basalts. Earth Planet. Sci. Lett. 1978, 37, 380–392. [Google Scholar] [CrossRef]
- Yardley, B.W.D. The evolution of fluids through the metamorphic cycle. In Fluid Flow and Transport in Rocks: Mechanisms and Effects; Jamtveit, B., Yardley, B.W.D., Eds.; Chapman & Hall: London, UK, 1997; pp. 99–122. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Worden, R.H. Controls on halogen concentrations in sedimentary formation waters. Mineral. Mag. 1996, 60, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, D.K.; Lindblom, S.; Donahoe, R.J.; Barton, C.C. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. Geochim. Cosmochim. Acta 1989, 53, 1741–1755. [Google Scholar] [CrossRef]
- Kelly, W.C.; Rye, R.O.; Livnat, A. Saline minewaters of the Keeweenaw Peninsula, northern Michigan: Their nature, origin and relation to similar deep waters in Precambrian crystalline rocks of the Canadian shield. Am. J. Sci. 1986, 286, 281–308. [Google Scholar] [CrossRef]
- Frape, S.K.; Fritz, P. Geochemical trends for groundwaters from the Canadian shield. In Saline Water and Gases in Crystalline Rocks; Special Paper 33; Fritz, P., Frape, S.K., Eds.; Geological Association of Canada: St. John’s, Canada, 1987; pp. 19–38. [Google Scholar]
- Böhlke, J.K.; Irwin, J.J. Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids. Geochim. Cosmochim. Acta 1992, 56, 203–225. [Google Scholar] [CrossRef]
- Olmstead, S.; Muehlenbachs, L.; Shih, J.; Chu, Z.; Krupnick, A. Shale gas development impacts on surface water quality in Pennsylvania. Proc. Natl. Acad. Sci. USA 2013, 110, 4962–4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkness, J.; Warner, N.R.; Dwyer, G.S.; Mitch, W.; Vengosh, A. Halogens in oil and gas production-associated wastewater. In Proceedings of the AGU Fall Meeting 2014, San Francisco, CA, USA, 15–19 December 2014; p. H23C-0891. [Google Scholar]
- Harkness, J.S.; Dwyer, G.S.; Warner, N.R.; Parker, K.M.; Mitch, W.A.; Vengosh, A. Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications. Environ. Sci. Technol. 2015, 49, 1955–1963. [Google Scholar] [CrossRef]
- Scambelluri, M.; van Roermund, H.L.M.; Pettke, T. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes. Lithos 2010, 120, 186–201. [Google Scholar] [CrossRef]
- Urann, B.M.; Le Roux, V.; John, T.; Beaudoin, G.M.; Barnes, J.D. The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador). Am. Mineral. 2020, 105, 307–318. [Google Scholar] [CrossRef]
- Brenan, J.M. Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: Implications for the F and Cl content of high P-T fluids. Earth Planet. Sci. Lett. 1993, 117, 251–263. [Google Scholar] [CrossRef]
- Fuge, R.; Johnson, C.C. The geochemistry of iodine—A review. Environ. Geochem. Health 1986, 8, 31–54. [Google Scholar] [CrossRef]
- Muramatsu, Y.; Wedepohl, K.H. The distribution of iodine in the earth’s crust. Chem. Geol. 1998, 147, 201–216. [Google Scholar] [CrossRef]
- Sanford, R.F. Mineralogical and chemical effects of hydration reactions and applications to serpentinization. Am. Mineral. 1981, 66, 290–297. [Google Scholar]
- Worden, R. Halogen elements in sedimentary systems and their evolution during diagenesis. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle; Harlov, D.E., Aranovich, L., Eds.; Springer: Berlin, Germany, 2018; pp. 185–260. [Google Scholar]
- Fontes, J.; Matray, J.M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chem. Geol. 1993, 109, 149–175. [Google Scholar] [CrossRef]
- Walker, R.; Carlson, R.; Shirey, S.; Boyd, F. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of sub-continental mantle. Geochim. Cosmochim. Acta 1989, 53, 1583–1595. [Google Scholar] [CrossRef]
- McDonough, W. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 1990, 101, 1–18. [Google Scholar] [CrossRef]
- Chavrit, D.; Burgess, R.; Sumino, H.; Teagle, D.; Droop, G.; Shimizu, A.; Ballentine, C.J. The contribution of the hydrothermal alteration of the ocean crust to the deep halogen and noble gas cycles. Geochim. Cosmochim. Acta 2016, 183, 106–124. [Google Scholar] [CrossRef]
- Li, Y. Distribution patterns of the elements in the ocean: A synthesis. Geochim. Cosmochim. Acta 1991, 55, 3223–3240. [Google Scholar]
- Ionov, D.; Griffin, W.; O’Reilly, S. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 1997, 141, 153–184. [Google Scholar] [CrossRef]
- Philippot, P.; van Roermund, H.L.M. Deformation processes in eclogitic rocks: Evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. J. Struct. Geol. 1992, 14, 1059–1077. [Google Scholar] [CrossRef]
- Selverstone, J.; Franz, G.; Thomas, S.; Getty, S. Fluid variability in 2 GPa eclogites as an indicator of fluid behaviour during subduction. Contrib. Mineral. Petrol. 1992, 112, 341–357. [Google Scholar] [CrossRef]
- Nadeau, S.; Philippot, P.; Pineau, F. Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth Planet. Sci. Lett. 1993, 114, 431–448. [Google Scholar] [CrossRef]
- Martin, H.; Claeys, P.; Gargaud, M.; Pinti, D.; Selsis, F. 6. Environmental Context. Earth Moon Planets 2006, 98, 205–245. [Google Scholar] [CrossRef]
- Kendrick, M.; Hémond, C.; Kamenetsky, V.S.; Danyushevsky, L.; Devey, C.W.; Rodemann, T.; Jackson, M.G.; Perfit, M.R. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 2017, 10, 222–228. [Google Scholar] [CrossRef]
- Broadley, M.W.; Sumino, H.; Graham, D.; Burgess, R.; Ballentine, C.J. Recycled components in mantle plumes deduced from variations in halogens (Cl, Br, and I), trace elements, and 3He/4He along the Hawaiian-Emperor Seamount Chain. Geochem. Geophys. 2019, 20, 277–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carswell, D.A.; van Roermund, H.L.M. On multi-phase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjørtoft, west Norway. Eur. J. Mineral. 2005, 17, 31–42. [Google Scholar] [CrossRef]
Sample ID | Location in Figure 1 | Lithology | Major Phases | Minor Phases | Prepared Fraction |
---|---|---|---|---|---|
QC26C | Årsheimneset | Gneiss | Alb-qtz-gt | Ph-ap-zr | Ph, gt |
QC26E | Årsheimneset | Eclogite | Gt-cpx-qtz | Rt-ap-zr | Gt, qtz |
QC26G | Årsheimneset | Garnet websterite | Gt-bt-cpx-opx-cc | Amp-rt-opq-spl-zr | Gt, bt |
QC26H | Årsheimneset | Garnet websterite | Gt-bt-cpx-opx | Qtz-amp-rt-ap-mon | Gt, qtz, bt |
QC36A | Svartberget | Olivine websterite | Gt-cpx-opx-ol | Amp-opq-spl | Ol, gt |
QC36C | Svartberget | Garnet peridotite | Gt-ol-opx-cpx | Chu-opq | - |
QC36D | Svartberget | Garnet websterite | Gt-bt-opx-cpx | Amp-rut-zr-opq | Gt, bt |
QC36G | Svartberget | Garnet websterite | Gt-bt-cpx-opx | Amp-rt-zr-mon | Gt, bt |
QC36Q | Svartberget | Leucogneiss | Qtz-afs-bt-ph | spl | Qtz |
QC36U | Svartberget | Garnetite | Gt-bt-cpx-opx-ap | Amp-ph | - |
Sample | QC26C | QC26E | QC26G | QC26H | QC36A | QC36C | QC36D | QC36G | QC36U |
---|---|---|---|---|---|---|---|---|---|
Locality | A. | A. | A. | A. | S. | S. | S. | S. | S. |
Lithology | Gneiss | Eclogite | Websterite | Websterite | Websterite | Peridotite | Websterite | Websterite | Garnetite |
SiO2 | 74.97 | 49.56 | 44.07 | 52.16 | 49.71 | 43.50 | 50.33 | 44.86 | 41.79 |
TiO2 | 0.02 | 2.01 | 2.26 | 3.16 | 0.09 | 0.22 | 0.19 | 1.36 | 0.09 |
Al2O3 | 12.05 | 9.66 | 9.24 | 9.16 | 3.44 | 2.95 | 6.48 | 12.95 | 14.19 |
Cr2O3 | - | 0.07 | 0.22 | 0.23 | 0.27 | 0.24 | 0.39 | 0.25 | 0.11 |
FeO | 2.83 | 10.87 | 10.93 | 10.76 | 10.89 | 13.13 | 8.00 | 9.98 | 11.51 |
MnO | 3.44 | 0.17 | 0.18 | 0.27 | 0.23 | 0.23 | 0.24 | 0.39 | 0.51 |
MgO | 0.36 | 9.01 | 14.75 | 12.34 | 26.39 | 35.16 | 18.08 | 13.45 | 17.01 |
CaO | 1.71 | 13.65 | 10.91 | 7.44 | 7.77 | 4.07 | 10.70 | 9.06 | 8.61 |
Na2O | 3.90 | 1.71 | 1.13 | 1.37 | 0.21 | 0.07 | 1.29 | 1.72 | 0.22 |
K2O | 0.70 | 0.01 | 1.43 | 1.25 | 0.03 | 0.01 | 0.98 | 1.69 | 1.24 |
P2O5 | 0.82 | 2.47 | - | 0.41 | 0.01 | - | - | - | 2.35 |
Total | 100.80 | 99.19 | 95.14 | 98.56 | 99.04 | 99.58 | 96.64 | 95.71 | 97.64 |
F (ppm) | 576 | 1228 | 2126 | 1960 | 59 | 1195 | 582 | 1001 | 1094 |
Cl (ppm) | 44 | 250 | 222 | 237 | 3 | 1 | 29 | 48 | 81 |
F/Cl (wt) | 13 | 5 | 10 | 8 | 20 | 1195 | 20 | 21 | 14 |
Mineral | Ap | Ap | Ap | Ap | Amp | Amp | Amp | Amp | Amp | Amp | Bt | Bt | Bt | Bt | Bt | Chu | Ph |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | QC26C | QC26E | QC26H | QC36U | QC26G | QC26H | QC36A | QC36D | QC36G | QC36U | QC26G | QC26H | QC36D | QC36G | QC36U | QC36C | QC26C |
SiO2 | 0.04 | 0.07 | 0.03 | 0.10 | 53.57 | 53.95 | 44.61 | 46.35 | 46.83 | 44.22 | 40.35 | 40.80 | 37.57 | 38.24 | 39.48 | 35.89 | 46.49 |
TiO2 | - | - | - | - | 0.12 | 0.07 | 0.29 | 0.16 | 0.23 | 0.14 | 1.70 | 1.34 | 1.08 | 1.76 | 0.40 | 3.03 | 0.34 |
Al2O3 | 0.01 | 0.08 | - | 0.03 | 3.59 | 3.22 | 12.12 | 4.69 | 10.02 | 12.18 | 13.61 | 13.11 | 15.22 | 15.85 | 15.47 | - | 30.85 |
Cr2O3 | - | - | - | - | 0.12 | 0.16 | 0.33 | 0.27 | 0.13 | 0.36 | 0.15 | 0.18 | 0.45 | 0.14 | 0.21 | - | 0.01 |
FeO | 0.08 | 0.15 | 0.07 | 0.12 | 7.44 | 7.94 | 6.61 | 4.78 | 8.84 | 8.03 | 7.21 | 7.96 | 6.74 | 9.11 | 6.77 | 10.68 | 3.17 |
MnO | 0.00 | 0.01 | 0.02 | 0.04 | 0.07 | 0.11 | 0.08 | 0.11 | 0.22 | 0.16 | 0.01 | 0.02 | 0.02 | 0.07 | 0.03 | 0.15 | 0.08 |
MgO | 0.04 | 0.08 | 0.03 | 0.19 | 18.93 | 19.74 | 17.19 | 17.73 | 16.13 | 15.72 | 20.69 | 20.86 | 19.48 | 18.88 | 21.26 | 47.03 | 1.64 |
CaO | 54.20 | 53.99 | 53.95 | 53.88 | 10.75 | 9.09 | 12.11 | 7.75 | 10.47 | 11.78 | 0.02 | 0.01 | −0.01 | −0.02 | 0.06 | 0.01 | −0.01 |
Na2O | 0.08 | 0.18 | 0.10 | 0.05 | 1.07 | 1.22 | 1.97 | 1.18 | 2.27 | 1.93 | 0.89 | 0.50 | 0.52 | 0.77 | 0.53 | 0.03 | 0.46 |
K2O | 0.00 | 0.01 | 0.01 | - | 0.47 | 0.44 | 0.89 | 0.39 | 0.38 | 0.81 | 7.80 | 8.84 | 6.84 | 8.77 | 8.19 | 0.01 | 10.27 |
P2O5 | 41.08 | 41.32 | 41.69 | 39.17 | - | - | - | - | - | - | - | - | - | - | - | 0.01 | - |
F | 2.29 | 2.05 | 2.76 | 1.18 | 0.44 | 0.53 | 0.20 | 0.27 | 0.30 | 0.16 | 1.08 | 1.31 | 0.36 | 0.48 | 0.24 | 2.39 | 0.20 |
Cl | 0.19 | 0.42 | 0.43 | 0.09 | 0.04 | 0.24 | 0.01 | 0.00 | 0.01 | 0.01 | 0.11 | 0.12 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Total | 95.51 | 95.87 | 95.88 | 93.57 | 96.12 | 95.91 | 96.21 | 83.40 | 95.50 | 95.33 | 92.44 | 93.62 | 87.91 | 93.56 | 92.41 | 96.84 | 93.30 |
O:F-Cl | 1.00 | 1.01 | 1.25 | 0.52 | 0.19 | 0.28 | 0.09 | 0.11 | 0.13 | 0.07 | 0.48 | 0.58 | 0.16 | 0.21 | 0.11 | 1.00 | 0.09 |
F/Cl | 12 | 5 | 6.5 | 13 | 11 | 21 | 21 | - | 30 | 16 | 10 | 22 | 18 | 24 | 12 | 240 | 20 |
Total | 94.51 | 94.86 | 94.63 | 93.05 | 95.93 | 95.63 | 96.12 | 83.29 | 95.37 | 95.26 | 91.96 | 93.04 | 87.75 | 93.35 | 92.30 | 95.84 | 93.21 |
Si | 0.01 | 0.01 | - | 0.01 | 7.65 | 7.70 | 6.46 | 7.52 | 6.85 | 6.51 | 2.96 | 2.98 | 2.89 | 2.84 | 2.89 | 3.92 | 3.18 |
Ti | - | - | - | - | 0.01 | 0.01 | 0.03 | 0.02 | 0.03 | 0.02 | 0.09 | 0.07 | 0.06 | 0.10 | 0.02 | 0.25 | 0.02 |
Al | - | - | - | - | 0.60 | 0.54 | 2.07 | 0.90 | 1.73 | 2.11 | 1.17 | 1.13 | 1.38 | 1.38 | 1.34 | - | 2.50 |
Cr | - | - | - | - | 0.01 | 0.02 | 0.04 | 0.04 | 0.02 | 0.04 | - | - | - | - | - | - | - |
Fe2+ | 0.01 | 0.01 | 0.01 | 0.01 | 0.90 | 0.96 | 0.61 | 0.66 | 1.09 | 0.91 | 0.44 | 0.49 | 0.43 | 0.56 | 0.42 | 0.98 | 0.18 |
Mn | - | - | - | - | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Mg | - | 0.01 | - | 0.02 | 4.03 | 4.19 | 3.71 | 4.29 | 3.52 | 3.45 | 2.26 | 2.27 | 2.23 | 2.07 | 2.32 | 7.66 | 0.17 |
Ca | 5.07 | 5.04 | 4.98 | 5.25 | 1.64 | 1.39 | 1.88 | 1.35 | 1.64 | 1.85 | - | - | - | - | 0.01 | - | - |
Na | 0.02 | 0.03 | 0.02 | 0.01 | 0.30 | 0.34 | 0.55 | 0.37 | 0.64 | 0.55 | 0.13 | 0.07 | 0.08 | 0.11 | 0.08 | 0.01 | 0.06 |
K | - | - | - | - | 0.09 | 0.08 | 0.16 | 0.08 | 0.07 | 0.15 | 0.74 | 0.84 | 0.70 | 0.83 | 0.78 | - | 0.91 |
P | 3.03 | 3.05 | 3.04 | 3.02 | - | - | - | - | - | - | - | - | - | - | - | - | - |
F | 0.63 | 0.56 | 0.75 | 0.34 | 0.20 | 0.24 | 0.09 | 0.14 | 0.14 | 0.08 | 0.25 | 0.30 | 0.09 | 0.05 | 0.06 | 0.41 | 0.04 |
Cl | 0.03 | 0.06 | 0.19 | 0.01 | 0.01 | 0.05 | 0.002 | 0.00 | 0.00 | 0.002 | 0.01 | 0.02 | 0.003 | 0.002 | 0.002 | 0.00 | 0.001 |
Total | 8.12 | 8.15 | 8.05 | 8.31 | 15.23 | 15.24 | 15.52 | 15.23 | 15.61 | 15.70 | 7.80 | 7.84 | 7.74 | 7.86 | 7.84 | 12.83 | 7.02 |
Sample | Cl (ppm) | Br (ppb) | I (ppb) | Br/Cl (×10−2) | I/Cl (×10−4) | Br/I (102) | K (ppm) | K/Cl |
---|---|---|---|---|---|---|---|---|
QC26C-Grt (F) | 15.7 | 1005.4 | 2.00 | 6.42 | 1.28 | 5.02 | 1068 | 68.2 |
QC26C-Grt (C) | 4.1 | 301.3 | 0.78 | 7.36 | 1.87 | 3.93 | 17 | 4.2 |
QC26C-Grt total | 19.8 | 1306.7 | 2.78 | 6.62 | 1.41 | 4.70 | 1085 | 54.9 |
QC26C-Ph-1 (F) | 40.6 | 253.8 | 4.11 | 0.55 | 0.88 | 0.62 | 89,209 | 2197 |
QC26C-Ph-2 (F) | 50.2 | 269.5 | 4.90 | 0.54 | 0.98 | 0.55 | 80,764 | 1609 |
QC26E-Grt-1 (F) | 17.5 | 117.4 | 0.38 | 0.67 | 0.22 | 3.06 | 23 | 1.3 |
QC26E-Grt-1 (C) | 0.3 | 11.2 | 0.05 | 3.78 | 1.74 | 2.17 | 1 | 3.3 |
QC26E-Grt-1 total | 17.8 | 128.6 | 0.43 | 0.72 | 0.24 | 2.99 | 24 | 1.3 |
QC26E-Grt-2 (F) | 26.3 | 123.4 | 0.31 | 0.47 | 0.12 | 4.01 | 25 | 0.9 |
QC26E-Qz-1 (F) | 5.3 | 61.9 | 0.27 | 1.17 | 0.52 | 2.26 | 21 | 4.0 |
QC26E-Qz-1 (C) | 3.2 | 36.2 | 0.18 | 1.15 | 0.57 | 2.00 | 6 | 1.9 |
QC26E-Qz-1 total | 8.5 | 98.1 | 0.45 | 1.16 | 0.53 | 2.18 | 27 | 3.2 |
QC26E-Qz-2 (F) | 3.4 | 58.6 | 0.15 | 1.75 | 0.47 | 3.92 | 12 | 3.6 |
QC26G-Grt-1 (F) | 3.1 | 83.8 | 0.32 | 2.72 | 1.06 | 2.58 | 53 | 17.3 |
QC26G-Grt-1 (C) | 4.3 | 148.8 | 0.46 | 3.46 | 1.06 | 3.25 | 10 | 2.3 |
QC26G-Grt-1 total | 7.4 | 232.6 | 0.78 | 3.16 | 1.06 | 2.98 | 63 | 8.5 |
QC26G-Grt-2 (F) | 101.5 | 733.8 | 2.16 | 0.73 | 0.21 | 3.39 | 682 | 6.7 |
QC26G-Grt-2 (C) | 0.8 | 29.2 | 0.13 | 3.51 | 1.51 | 2.33 | 12 | 14.5 |
QC26G-Grt-2 total | 102.3 | 763.0 | 2.29 | 0.75 | 0.22 | 3.33 | 694 | 6.8 |
QC26G-Grt-2a (C) | 1.6 | 47.9 | 0.19 | 3.07 | 1.24 | 2.47 | 7 | 4.5 |
QC26G-Grt-3 (F) | 2.6 | 59.0 | 0.17 | 2.26 | 0.65 | 3.40 | 64 | 24.5 |
QC26G-Grt-3 (C) | 0.6 | 11.2 | 0.11 | 1.77 | 1.69 | 1.04 | 2.9 | 4.6 |
QC26G-Grt-3 total | 3.2 | 70.2 | 0.28 | 2.17 | 0.86 | 2.51 | 66.9 | 20.6 |
QC26H-Qz-1 (F) | 13.7 | 224.4 | 0.69 | 1.64 | 0.51 | 3.23 | 38.9 | 2.8 |
QC26H-Qz-1 (C) | 11.5 | 166.1 | 1.02 | 1.45 | 0.86 | 1.63 | 23 | 2.0 |
QC26H-Qz-1 total | 25.2 | 390.5 | 1.71 | 1.55 | 0.68 | 2.28 | 61.9 | 2.5 |
QC26H-Qz-2 (F) | 14.2 | 220.1 | 0.73 | 1.55 | 0.52 | 3.00 | 78 | 5.5 |
QC26H-Grt-1 (F) | 116.8 | 622.9 | 0.99 | 0.53 | 0.08 | 6.30 | 185 | 1.6 |
QC26H-Grt-1 (C) | 3.9 | 78.5 | 0.24 | 1.99 | 0.60 | 3.30 | 8.6 | 2.2 |
QC26H-Grt-1 total | 120.7 | 701.4 | 1.23 | 0.58 | 0.10 | 5.70 | 193.6 | 1.6 |
QC26H-Grt-2 (F) | 17.1 | 75.8 | 0.18 | 0.44 | 0.10 | 4.26 | 33 | 1.9 |
QC26H-Bt (F) | 99.5 | 548.8 | 6.79 | 0.55 | 0.68 | 8.08 | 71,810 | 721 |
Sample | Cl (ppm) | Br (ppb) | I (ppb) | Br/Cl (×10−2) | I/Cl (×10−4) | Br/I (102) | K (ppm) | K/Cl |
---|---|---|---|---|---|---|---|---|
QC36A-Ol (F) | 6.2 | 62.9 | 0.38 | 1.01 | 0.62 | 1.64 | 21 | 3.4 |
QC36A-Ol (C) | 0.6 | 4.6 | 0.09 | 0.77 | 1.52 | 5.07 | 2 | 3.4 |
QC36A-Ol total | 6.8 | 67.5 | 0.47 | 0.99 | 0.69 | 1.44 | 23 | 3.4 |
QC36A-Grt-1 (F) | 1.3 | 16.2 | 1.74 | 1.23 | 13.0 | 0.09 | 47 | 35.6 |
QC36A-Grt-1 (C) | 0.2 | 2.7 | 0.29 | 1.26 | 14.0 | 0.09 | 13 | 61.9 |
QC36A-Grt-1 total | 1.5 | 18.9 | 2.03 | 1.24 | 13.3 | 0.09 | 60 | 39.2 |
QC36A-Grt-2 (F) | 1.1 | 8.8 | 1.55 | 0.83 | 15.0 | 0.06 | 22 | 20.9 |
QC36D-Grt-1 (F) | 1.0 | 23.4 | 0.24 | 2.44 | 2.52 | 0.97 | 129 | 134 |
QC36D-Grt-1 (C) | 0.1 | 3.0 | 0.03 | 2.88 | 3.00 | 1.18 | 1 | 10.0 |
QC36D-Grt-1 total | 1.1 | 26.4 | 0.27 | 2.49 | 2.55 | 0.98 | 130 | 122 |
QC36D-Grt-2 (F) | 0.7 | 20.3 | 0.28 | 3.06 | 4.25 | 0.72 | 94 | 142 |
QC36D-Bt-1 (F) | 136.7 | 904.8 | 3.65 | 0.66 | 0.27 | 2.48 | 70,240 | 513 |
QC36D-Bt-2 (F) | 152.9 | 720.5 | 8.19 | 0.47 | 0.54 | 0.88 | 76,495 | 500 |
QC36G-Grt-1 (F) | 4.5 | 123.3 | 0.58 | 2.75 | 1.29 | 2.14 | 1065 | 237 |
QC36G-Grt-1 (C) | 0.4 | 11.5 | 0.12 | 3.20 | 3.24 | 0.99 | 3 | 8.3 |
QC36G-Grt-1 total | 4.9 | 134.8 | 0.7 | 2.79 | 1.45 | 1.93 | 1068 | 220 |
QC36G-Grt-2 (F) | 427.1 | 2116.1 | 4.38 | 0.50 | 0.10 | 4.83 | 1094 | 2.6 |
QC36G-Bt-1 (F) | 906.0 | 747.0 | 8.60 | 0.08 | 0.09 | 0.87 | 77,912 | 86.0 |
QC36G-Bt-2 (F) | 1014.1 | 1069.8 | 12.09 | 0.11 | 0.12 | 0.86 | 81,807 | 81 |
QC36G-Bt-3 (F) | 86.5 | 410.4 | 6.16 | 0.48 | 0.71 | 0.67 | 40,906 | 473 |
QC36G-Bt-4 (F) | 137.5 | 668.8 | 8.66 | 0.49 | 0.63 | 0.77 | 83,836 | 610 |
QC36Q-Qz-1 (F) | 4.3 | 148.7 | 0.27 | 3.45 | 0.63 | 5.50 | 556 | 129 |
QC36Q-Qz-1 (C) | 3.2 | 36.2 | 0.18 | 1.14 | 0.57 | 2.00 | 6 | 1.9 |
QC36Q-Qz-1 total | 7.5 | 184.9 | 0.45 | 2.47 | 0.60 | 4.11 | 562 | 75 |
QC36Q-Qz-2 (F) | 3.2 | 109.9 | 0.14 | 3.47 | 0.45 | 7.70 | 18 | 5.7 |
Sample | NaCl (wt%) | Cl | Br | I |
---|---|---|---|---|
QC26C-Gt | 18.6–20.2 | 112823–121441 | 8304–8938 | 21.1–22.7 |
QC26E-Gt | 18.6–20.2 | 112823–121441 | 4264–4590 | 19.7–21.2 |
QC26E-Qtz | 18.6–20.2 | 112823–121441 | 1297–1396 | 6.5–6.9 |
QC26G-Gt | 18.6–20.2 | 112823–121441 | 3328–3582 | 15.5–16.7 |
QC26H-Gt | 18.6–20.2 | 112823–121441 | 2244–2416 | 6.7–7.3 |
QC26H-Qtz | 18.6–20.2 | 112823–121441 | 1636–1761 | 9.7–10.5 |
QC36A-Ol | 18.6–20.2 | 112823–121441 | 868–935 | 17.2–18.5 |
QC36A-Gt | 18.6–20.2 | 112823–121441 | 1421–1530 | 157–169 |
QC36D-Gt | 18.6–20.2 | 112823–121441 | 3249–3497 | 27.4–29.5 |
QC36G-Gt | 18.6–20.2 | 112823–121441 | 3610–3886 | 36.5–39.3 |
QC36Q-Qtz | 18.6–20.2 | 112823–121441 | 1286–1384 | 6.4–6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, L.; Cuthbert, S.; Quas-Cohen, A.; Ruzié-Hamilton, L.; Pawley, A.; Droop, G.; Lyon, I.; Tartèse, R.; Burgess, R. Halogens in Eclogite Facies Minerals from the Western Gneiss Region, Norway. Minerals 2021, 11, 760. https://doi.org/10.3390/min11070760
Hughes L, Cuthbert S, Quas-Cohen A, Ruzié-Hamilton L, Pawley A, Droop G, Lyon I, Tartèse R, Burgess R. Halogens in Eclogite Facies Minerals from the Western Gneiss Region, Norway. Minerals. 2021; 11(7):760. https://doi.org/10.3390/min11070760
Chicago/Turabian StyleHughes, Lewis, Simon Cuthbert, Alex Quas-Cohen, Lorraine Ruzié-Hamilton, Alison Pawley, Giles Droop, Ian Lyon, Romain Tartèse, and Ray Burgess. 2021. "Halogens in Eclogite Facies Minerals from the Western Gneiss Region, Norway" Minerals 11, no. 7: 760. https://doi.org/10.3390/min11070760
APA StyleHughes, L., Cuthbert, S., Quas-Cohen, A., Ruzié-Hamilton, L., Pawley, A., Droop, G., Lyon, I., Tartèse, R., & Burgess, R. (2021). Halogens in Eclogite Facies Minerals from the Western Gneiss Region, Norway. Minerals, 11(7), 760. https://doi.org/10.3390/min11070760