Ore Genesis of the Takatori Tungsten–Quartz Vein Deposit, Japan: Chemical and Isotopic Evidence
Abstract
:1. Introduction
2. Geology and Mineralogy in the Takatori Mining Area
2.1. Geologic Setting
2.2. Takatori Deposit
3. Materials and Methods
3.1. Chemical Analysis
3.2. Lithium Isotope Analysis
3.3. Oxygen Isotope Analysis
4. Results
4.1. Chemical Analysis
4.2. Lithium Isotope Analysis
4.3. Oxygen Isotope Analysis
5. Discussion
5.1. Replacement Textures in Wolframite
5.2. Li Isotopes of Li-Bearing Mica Samples
5.3. Oxygen Isotope Thermometry
5.4. Related Underlying Granites
5.5. Formation Pressure of the Takatori Ore Deposit
5.6. Genesis of the Takatori Deposit
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Xu, J.; Shan, L.; Cheng, X.; Deng, Y.; Feng, W.; Qiao, L. Ore Genesis and Tectonic Significance of the Xiaojiashan Tungsten Deposit, Eastern Tianshan, Xinjiang, China: Evidence from Geology, Fluid Inclusions, and Stable Isotope Geochemistry. Resour. Geol. 2019, 69, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, D.; Gao, J.-F. Origin and evolution of ore-forming fluids in a tungsten mineralization system, Middle Jiangnan orogenic belt, South China: Constraints from in-situ LA-ICP-MS analyses of scheelite. Ore Geol. Rev. 2020, 127, 103806. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.-L.; Fu, Q.; Li, W.-X. Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. Am. Miner. 2021, 106, 443–460. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zhang, D.; Yu, J.; Liu, Y. Genesis of the Yingzuihongshan Tungsten Deposit, Western Inner Mongolia Autonomous Region, North China: Constraints from In Situ Trace Elements Analyses of Scheelite. Minerals 2021, 11, 510. [Google Scholar] [CrossRef]
- Ishihara, S. The Mo-W metallogenic provinces and the related granitic provinces. Mining Geol. 1973, 23, 13–32, (In Japanese with English abstract). [Google Scholar]
- Ministry of International Trade and Industry (MITI). Report of Prospect for Mineral Resources of Rare Metal in the Kasama Area, Showa 61st Fiscal Year; Ministry of International Trade and Industry: Tokyo, Japan, 1987; p. 155. (In Japanese)
- Ogasawara, M.; Tagiri, M.; Murao, S.; Seki, Y.; Kodama, T. Graphitization of carbonaceous material in sedimentary rocks of the Yamizo group surrounding the Takatori tungsten deposit, Japan: Influence of hydrothermal activity and the application to mineral exploration. J. Mineral. Petrol. Econ. Geol. 1994, 89, 348–359, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Ikeda, N.; Hida, H.; Noguchi, K.; Fujiwara, M. Geology and ore deposits of the Takatori tungsten mine, Ibaraki Prefecture, Central Japan, with special reference to the fracture system. Mining Geol. 1983, 33, 97–114, (In Japanese with English abstract). [Google Scholar]
- Yoshioka, T.; Takizawa, F.; Takahashi, M.; Miyazaki, K.; Banno, Y.; Yanagisawa, Y.; Takahashi, Y.; Kubo, K.; Seki, Y.; Komazawa, M.; et al. Geological Map of Japan 1:200,000, Mito, 2nd ed.; Geological Survey of Japan: Tsukuba, Japan, 2001. [Google Scholar]
- Ministry of International Trade and Industry (MITI). Report of Prospect for Mineral Resources of Rare Metal in the Kasama Area, Heisei 1st Fiscal Year; Ministry of International Trade and Industry: Tokyo, Japan, 1990; p. 211. (In Japanese)
- Shibata, K.; Ishihara, S. K-Ar age of the major tungsten and molybdenum deposits in Japan. Econ. Geol. 1974, 69, 1207–1214. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constant in Geo- and Cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Sakamoto, M. Internal structure and compositional variation of wolframite in the Takatori mine. Mining Geol. 1985, 35, 317–329. [Google Scholar]
- Masukawa, K.; Nishio, Y.; Hayashi, K. Lithium-strontium isotope and heavy metal content of fluid inclusions and origin of ore-forming fluid responsible for tungsten mineralization at Takatori mine, Japan. Geochem. J. 2013, 47, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Nishio, Y.; Okamura, K.; Tanimizu, M.; Ishikawa, T.; Sano, Y. Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: Implications for deepseated fluids and earthquake swarms. Earth Planet. Sci. Lett. 2010, 297, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Flesch, G.D.; Anderson, A.R., Jr.; Svec, H.J. A secondary isotopic standard for 6Li/7Li determinations. Int. J. Mass Spectrom. Ion Phys. 1973, 12, 265–272. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Clayton, R.N.; Goldsmith, J.R.; Mayeda, T.K. Oxygen isotope fractionation in quartz, albite anorthite and calcite. Geochim. Cosmochim. Acta 1989, 53, 725–733. [Google Scholar] [CrossRef]
- Chacko, T.; Hu, X.; Mayeda, T.K.; Clayton, R.N.; Goldsmith, J.R. Oxygen isotope fractionations in muscovite, phlogopite and rutile. Geochim. Cosmochim. Acta 1996, 60, 2595–2608. [Google Scholar] [CrossRef]
- Zhang, L.-G.; Liu, J.-X.; Zhou, H.-B.; Chen, Z.-S. Oxygen isotope fractionation in the quartz-water-salt system. Econ. Geol. 1989, 84, 1643–1650. [Google Scholar] [CrossRef]
- Zhang, L.-G.; Liu, J.-X.; Chen, Z.-S.; Zhou, H.-B. Experimental investigations of oxygen isotope fractionation in Cassiterite and Wolframite. Econ. Geol. 1994, 89, 150–157. [Google Scholar] [CrossRef]
- Enjoji, M. Studies on fluid inclusions as the media of the ore formation. Sci. Rept. Tokyo Kyoiku Daigaku 1972, 11, 79–126. [Google Scholar]
- Shibue, Y. Application of thermodynamic data to the stability fields of ferberite, huebnerite, and ferric tungstate. Neues Jahrb. Mineral. Mon. 1982, H.3, 125–132. [Google Scholar]
- Hayashi, K. Quantitative analysis of tungsten content in single fluid inclusion by SXRF. Photon Fact. Act. Rep. Part B 2012, 30, 15. [Google Scholar]
- Wunder, B.; Meixner, A.; Romer, R.L.; Feenstra, A.; Schettler, G.; Heinrich, W. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chem. Geol. 2007, 238, 277–290. [Google Scholar] [CrossRef]
- Shibue, Y.; Chiba, H.; Kusakabe, M.; Morishita, Y. Temperatures and oxygen isotopic composition of hydrothermal fluids for the Takatori tungsten-copper deposit, Japan. Resour. Geol. 2005, 55, 101–110. [Google Scholar] [CrossRef]
- Fortier, S.M.; Giletti, B.J. Volume self-diffusion of oxygen in biotite, muscovite, and phlogopite micas. Geochim. Cosmochim. Acta 1991, 55, 1319–1330. [Google Scholar] [CrossRef]
- Takenouchi, S.; Imai, H. Fluid inclusion study of some tungsten-quartz veins in Japan. Mining Geol. Spec. Issue 1971, 3, 345–350. [Google Scholar]
- Morishita, Y. Fluid evolution and geobarometry on the Ohtani and Kaneuchi tungsten-quartz vein deposits, Japan: Oxygen and carbon isotopic evidence. Miner. Depos. 1991, 26, 40–50. [Google Scholar] [CrossRef]
- Truesdell, A.H. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry. Earth Planet. Sci. Lett. 1974, 23, 387–396. [Google Scholar] [CrossRef]
- Horita, J.; Cole, D.R.; Wesolowski, D.J. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350 °C. Geochim. Cosmochim. Acta 1995, 59, 1139–1151. [Google Scholar] [CrossRef]
- Takahashi, M.; Aramaki, S.; Ishihara, S. Magnetite-series/ilmenite-series vs. I-type/S-type granitoids. Mining Geol. Spec. Issue 1980, 8, 13–28. [Google Scholar]
- Ishihara, S.; Matsuhisa, Y. Oxygen isotopic constraints on the geneses of the cretaceous granitoids in the Kitakami and Abukuma terrains, northeast Japan. Bull. Geol. Surv. Jpn. 2004, 55, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, S. Granitoid series and Mo/W-Sn mineralization in East Asia. Geol. Surv. Jpn. Rep. 1984, 263, 173–208. [Google Scholar]
- Robb, L. Introduction to Ore-Forming Processes; Blackwell Science Ltd.: Malden, MA, USA, 2005; 373p. [Google Scholar]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaC1 on phase relations in geologic systems: Equation of state for H2O-CO2-NaC1 fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Bowers, T.S.; Helgeson, H.C. FORTRAN programs for generating fluid inclusion isochores and fugacity coefficients for the system H2O-CO2-NaC1 at high pressures and temperatures. Comput. Geosci. 1985, 11, 203–213. [Google Scholar] [CrossRef]
- Kazahaya, K.; Matsuo, S. A new ball-milling method for extraction of fluid inclusions from minerals. Geochem. J. 1985, 19, 45–54. [Google Scholar] [CrossRef]
Sample No. | Vein No. | Locality | Level | Altitude (m) | Mineral Paragenesis |
---|---|---|---|---|---|
82032403 | 7 | W17 | −2 | 117 | Qz, Ms, Wolf, Fl, Ser |
TK82071305 | 5 | W17 | −3 | 87 | Qz, Ms, Wolf |
TK82031705 | 9 | W22 | −4 | 57 | Qz, Ms, Wolf |
82032407 | 8 | W21 | −4 | 57 | Qz, Ms, Wolf, Ser |
82032406 | 7 | W23 | −4 | 57 | Qz, Cassi |
82032404 | 7 | W20 | −4 | 57 | Qz, Wolf, Fl, Py |
82032411 | 7 | W26 | −7 | −33 | Qz, Ms, Wolf, Py |
Analysis No. | FeO | MnO | MnO/(FeO + MnO) |
---|---|---|---|
(wt.%) | (wt.%) | (mol%) | |
1 | 8.83 | 16.52 | 65.46 |
2 | 10.33 | 15.32 | 60.02 |
3 | 9.40 | 15.89 | 63.11 |
4 | 12.42 | 13.03 | 51.52 |
5 | 12.16 | 11.84 | 49.67 |
6 | 11.80 | 13.83 | 54.28 |
7 | 14.78 | 11.07 | 43.13 |
8 | 14.80 | 11.04 | 43.04 |
9 | 14.32 | 11.03 | 43.81 |
10 | 14.60 | 10.97 | 43.21 |
11 | 13.11 | 9.26 | 41.71 |
12 | 14.40 | 10.88 | 43.35 |
13 | 14.53 | 11.09 | 43.59 |
14 | 14.71 | 11.31 | 43.78 |
15 | 14.89 | 11.12 | 43.06 |
16 | 14.20 | 11.02 | 44.02 |
17 | 14.78 | 11.16 | 43.34 |
18 | 14.50 | 11.20 | 43.91 |
19 | 14.86 | 10.98 | 42.81 |
20 | 14.64 | 11.16 | 43.56 |
21 | 14.66 | 10.69 | 42.46 |
22 | 14.86 | 10.99 | 42.84 |
23 | 14.82 | 10.91 | 42.72 |
24 | 14.69 | 10.95 | 43.02 |
25 | 14.64 | 11.14 | 43.52 |
26 | 14.93 | 10.87 | 42.45 |
27 | 15.19 | 10.85 | 41.98 |
28 | 14.78 | 10.92 | 42.80 |
29 | 14.93 | 10.94 | 42.59 |
30 | 14.62 | 10.61 | 42.36 |
31 | 14.59 | 11.33 | 44.02 |
32 | 8.95 | 16.31 | 64.86 |
33 | 9.41 | 15.97 | 63.21 |
Sample No. | Locality | Mineral | δ7Li | Li |
---|---|---|---|---|
(‰) | (wt.%) | |||
82032403 | No.7V, −2L | sericite | −0.6 | 0.045 |
TK82071305 | No.5V, −3L | muscovite | −3.1 | 0.175 |
TK82031705 | No.9V, −4L | muscovite | −2.4 | 0.242 |
82032407 | No.8V, −4L | sericite | +2.1 | 0.020 |
82032411 | No.7V, −7L | muscovite | −2.1 | 0.236 |
δ18O SMOW (‰) | Equilibrium Temperature | δ18O SMOW (‰) | ||||||
---|---|---|---|---|---|---|---|---|
Sample No. | Vein | Quartz | Muscovite | Sericite | Wolframite | Cassiterite | Fluid | |
82032403 | No.7V, −2L | 13.1 | 5.5 | 389 °C | 8.2 | |||
TK82071305 | No.5V, −3L | 13.2 | 10.6 | 463 °C | 9.8 | |||
TK82071305 | No.5V, −3L | 13.2 | 5.8 | 404 °C | 8.7 | |||
TK82031705 | No.9V, −4L | 13.3 | 10.3 | 418 °C | 9.0 | |||
TK82031705 | No.9V, −4L | 13.2 | 5.0 | 357 °C | 7.5 | |||
82032406 | No.7V, −4L | 13.9 | 5.3 | 386 °C | 9.0 | |||
82032411 | No.7V, −7L | 13.0 | 6.1 | 430 °C | 9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morishita, Y.; Nishio, Y. Ore Genesis of the Takatori Tungsten–Quartz Vein Deposit, Japan: Chemical and Isotopic Evidence. Minerals 2021, 11, 765. https://doi.org/10.3390/min11070765
Morishita Y, Nishio Y. Ore Genesis of the Takatori Tungsten–Quartz Vein Deposit, Japan: Chemical and Isotopic Evidence. Minerals. 2021; 11(7):765. https://doi.org/10.3390/min11070765
Chicago/Turabian StyleMorishita, Yuichi, and Yoshiro Nishio. 2021. "Ore Genesis of the Takatori Tungsten–Quartz Vein Deposit, Japan: Chemical and Isotopic Evidence" Minerals 11, no. 7: 765. https://doi.org/10.3390/min11070765
APA StyleMorishita, Y., & Nishio, Y. (2021). Ore Genesis of the Takatori Tungsten–Quartz Vein Deposit, Japan: Chemical and Isotopic Evidence. Minerals, 11(7), 765. https://doi.org/10.3390/min11070765