Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFA Sample
2.2. Synthesis of the CFA–HAp Composites
2.3. Batch Adsorption Test
2.4. Adsorption Equilibrium Modelling
2.5. CFA–HAp Characterization Methods
3. Results and Discussion
3.1. Physical–Chemical Characteristics of CFA–HAp Composites
3.2. Cu(II) and RB Adsorption Equilibrium
- Cu(II): CFA–HAp2 > CFA–HAp3 > CFA–HAp4 ≈ CFA–HAp1,
- RB: CFA–HAp2 > CFA–HAp1 > CFA–HAp4 > CFA–HAp3.
3.3. Characteristics of CFA–HAp2 Composite with Cu(II) and RB Adsorbates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Umbuzeiro, G.d.A.; Albuquerque, A.F.; Vacchi, F.I.; Szymczyk, M.; Sui, X.; Aalizadeh, R.; von der Ohe, P.C.; Thomaidis, N.S.; Vinueza, N.R.; Freeman, H.S. Towards a Reliable Prediction of the Aquatic Toxicity of Dyes. Environ. Sci. Eur. 2019, 31, 76. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Klemola, K.; Pearson, J.; von Wright, A.; Liesivuori, J.; Lindström-Seppä, P. Evaluating the Toxicity of Reactive Dyes and Dyed Fabrics with the Hepa-1 Cytotoxicity Test. AUTEX Res. J. 2007, 7, 224–230. [Google Scholar]
- Przystaś, W.; Zabłocka-Godlewska, E. Mixture of Dyes—Study of Zootoxicity and Removal by Selected Fungal Strains. Ecol. Chem. Eng. A 2019, 26, 99–112. [Google Scholar] [CrossRef]
- Sani, Z.M.; Abdullahi, I.L.; Sani, A. Toxicity Evaluation of Selected Dyes Commonly Used for Clothing Materials in Urban Kano, Nigeria. Eur. J. Exp. Biol. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Chen, G.; Sun, G. Computer-Assisted Design of Environmentally Friendly and Light-Stable Fluorescent Dyes for Textile Applications. Int. J. Mol. Sci. 2019, 20, 5971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, S.; Chowdhary, P.; Bharagava, R.N. Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. In Emerging and Eco-Friendly Approaches for Waste Management; Bharagava, R.N., Chowdhary, P., Eds.; Springer: Singapore, 2019; pp. 219–244. ISBN 978-981-10-8668-7. [Google Scholar]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Bilińska, L.; Blus, K.; Bilińska, M.; Gmurek, M. Industrial Textile Wastewater Ozone Treatment: Catalyst Selection. Catalysts 2020, 10, 611. [Google Scholar] [CrossRef]
- Ashtekar, V.S.; Bhandari, V.M.; Shirsath, S.R.; Sai Chandra, P.L.V.N.; Jolhe, P.D.; Ghodke, S.A. Dye Wastewater Treatment: Removal of Reactive Dyes Using Inorganic and Organic Coagulants. J. Ind. Pollut. Control 2014, 30, 33–42. [Google Scholar]
- Yuan, M.; Salman, N.M.; Guo, H.; Xu, Z.; Xu, H.; Yan, W.; Liao, Z.; Wang, Y. A 2.5D Electrode System Constructed of Magnetic Sb–SnO2 Particles and a PbO2 Electrode and Its Electrocatalysis Application on Acid Red G Degradation. Catalysts 2019, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Atalay, S.; Ersöz, G. Advanced Oxidation Processes for Removal of Dyes from Aqueous Media. In Green Chemistry for Dyes Removal from Wastewater; Sharma, S.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 83–117. ISBN 978-1-118-72100-1. [Google Scholar]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Elkady, M.; Shokry, H.; Hamad, H. New Activated Carbon from Mine Coal for Adsorption of Dye in Simulated Water or Multiple Heavy Metals in Real Wastewater. Materials 2020, 13, 2498. [Google Scholar] [CrossRef] [PubMed]
- Abukhadra, M.R.; Mohamed, A.S. Adsorption Removal of Safranin Dye Contaminants from Water Using Various Types of Natural Zeolite. Silicon 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Karadag, D.; Akgul, E.; Tok, S.; Erturk, F.; Kaya, M.A.; Turan, M. Basic and Reactive Dye Removal Using Natural and Modified Zeolites. J. Chem. Eng. Data 2007, 52, 2436–2441. [Google Scholar] [CrossRef]
- Pereira, P.; Ferreira, B.; Oliveira, N.; Nassar, E.; Ciuffi, K.; Vicente, M.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 2018, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Zgureva, D.; Stoyanova, V.; Shoumkova, A.; Boycheva, S.; Avdeev, G. Quasi Natural Approach for Crystallization of Zeolites from Different Fly Ashes and Their Application as Adsorbent Media for Malachite Green Removal from Polluted Waters. Crystals 2020, 10, 1064. [Google Scholar] [CrossRef]
- Masoumi, A.; Ghaemy, M. Adsorption of Heavy Metal Ions and Azo Dyes by Crosslinked Nanochelating Resins Based on Poly(Methylmethacrylate-Co-Maleic Anhydride). Express Polym. Lett. 2014, 8, 187–196. [Google Scholar] [CrossRef]
- Politi, D.; Sidiras, D. Wastewater Treatment for Dyes and Heavy Metals Using Modified Pine Sawdust as Adsorbent. Procedia Eng. 2012, 42, 1969–1982. [Google Scholar] [CrossRef] [Green Version]
- Sahmoune, M.N.; Yeddou, A.R. Potential of Sawdust Materials for the Removal of Dyes and Heavy Metals: Examination of Isotherms and Kinetics. Desalination Water Treat. 2016, 57, 24019–24034. [Google Scholar] [CrossRef]
- Amari, A.; Alalwan, B.; Eldirderi, M.M.; Mnif, W.; Ben Rebah, F. Cactus Material-Based Adsorbents for the Removal of Heavy Metals and Dyes: A Review. Mater. Res. Express 2019, 7, 012002. [Google Scholar] [CrossRef]
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of Heavy Metals and Dyes from Wastewater Using Cellulose-Based Adsorbents. Environ. Chem. Lett. 2019, 17, 867–877. [Google Scholar] [CrossRef]
- Tahari, N.; Nefzi, H.; Labidi, A.; Ayadi, S.; Abderrabba, M.; Labidi, J. Removal of Dyes and Heavy Metals with Clays and Diatomite. In Water Pollution and Remediation: Heavy Metals; Environmental Chemistry for a Sustainable World; Ahamed, M.I., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 53, pp. 539–569. ISBN 978-3-030-52420-3. [Google Scholar]
- Visa, M.; Bogatu, C.; Duta, A. Simultaneous Adsorption of Dyes and Heavy Metals from Multicomponent Solutions Using Fly Ash. Appl. Surf. Sci. 2010, 256, 5486–5491. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Pai, S.; Kini, M.S.; Selvaraj, R. A Review on Adsorptive Removal of Dyes from Wastewater by Hydroxyapatite Nanocomposites. Environ. Sci. Pollut. Res. 2021, 28, 11835–11849. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xue, C.; Zhu, P. Removal of Carmine from Aqueous Solution by Carbonated Hydroxyapatite Nanorods. Nanomaterials 2017, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Adeogun, A.I.; Ofudje, E.A.; Idowu, M.A.; Kareem, S.O.; Vahidhabanu, S.; Babu, B.R. Biowaste-Derived Hydroxyapatite for Effective Removal of Reactive Yellow 4 Dye: Equilibrium, Kinetic, and Thermodynamic Studies. ACS Omega 2018, 3, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.-Y.; Ting, Y.; Ch’ng, B.-L.; Chen, C.; Cheng, Y.-H.; Chang, T.-C.; Hsi, H.-C. Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water 2020, 12, 1886. [Google Scholar] [CrossRef]
- Ramdani, A.; Kadeche, A.; Adjdir, M.; Taleb, Z.; Ikhou, D.; Taleb, S.; Deratani, A. Lead and Cadmium Removal by Adsorption Process Using Hydroxyapatite Porous Materials. Water Pract. Technol. 2020, 15, 130–141. [Google Scholar] [CrossRef]
- Iconaru, S.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) Ions onto Hydroxyapatite Nanopowders in Aqueous Solutions. Materials 2018, 11, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, G.U.; Kim, G.M.; Khalid, H.R.; Lee, H.K. The Effects of Temperature on the Hydrothermal Synthesis of Hydroxyapatite-Zeolite Using Blast Furnace Slag. Materials 2019, 12, 2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Lugo, V.; Karthik, T.V.K.; Mendoza-Anaya, D.; Rubio-Rosas, E.; Villaseñor Cerón, L.S.; Reyes-Valderrama, M.I.; Salinas-Rodríguez, E. Wet Chemical Synthesis of Nanocrystalline Hydroxyapatite Flakes: Effect of PH and Sintering Temperature on Structural and Morphological Properties. R. Soc. Open Sci. 2018, 5, 180962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, S.; Adzila, S.; Jeffrey, C.L.; Tan, C.; Purbolaksono, J.; Noor, A.M.; Hassan, M.; Sopyan, I.; Teng, W. Properties of Hydroxyapatite Synthesize by Wet Chemical Method. J. Ceram. Process. Res. 2013, 14, 448–452. [Google Scholar]
- Liu, J.; Ye, X.; Wang, H.; Zhu, M.; Wang, B.; Yan, H. The Influence of PH and Temperature on the Morphology of Hydroxyapatite Synthesized by Hydrothermal Method. Ceram. Int. 2003, 29, 629–633. [Google Scholar] [CrossRef]
- Predoi, D.; Predoi, M.; Iconaru, S.; Ech Cherif El Kettani, M.; Leduc, D.; Prodan, A. Ultrasonic Measurements on β Cyclodextrin/Hydroxyapatite Composites for Potential Water Depollution. Materials 2017, 10, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, H.A.; Noukrati, H.; Ben Youcef, H.; Bayoussef, A.; Oudadesse, H.; Barroug, A. Mechanical Behavior of Hydroxyapatite-Chitosan Composite: Effect of Processing Parameters. Minerals 2021, 11, 213. [Google Scholar] [CrossRef]
- Fu, L.-H.; Liu, Y.-J.; Ma, M.-G.; Zhang, X.-M.; Xue, Z.-M.; Zhu, J.-F. Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites. Polymers 2016, 8, 316. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.U.; Khalid, H.R.; Lee, N.; Wang, Z.; Lee, H.K. The Effects of NaOH Concentration on the Hydrothermal Synthesis of a Hydroxyapatite–Zeolite Composite Using Blast Furnace Slag. Minerals 2020, 11, 21. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Ohmichi, T.; Kamegawa, T.; Mori, K.; Yamashita, H. A Novel Synthetic Route to Hydroxyapatite–Zeolite Composite Material from Steel Slag: Investigation of Synthesis Mechanism and Evaluation of Physicochemical Properties. J. Mater. Chem. 2009, 19, 7263. [Google Scholar] [CrossRef]
- Grela, A.; Hebda, M.; Łach, M.; Mikuła, J. Thermal Behavior and Physical Characteristics of Synthetic Zeolite from CFB-Coal Fly Ash. Microporous Mesoporous Mater. 2016, 220, 155–162. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Wang, L.; Sun, X.; Huang, J. Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chin. J. Chem. Eng. 2009, 17, 513–521. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, H.; Ikoma, T.; Tanaka, J.; Stevens, G.W.; Komatsu, Y. Preparation of a Zeolite NaP1/Hydroxyapatite Nanocomposite and Study of Its Behavior as Inorganic Fertilizer: A Novel Inorganic Fertilizer Using a Zeolite NaP1/Hydroxyapatite Nanocomposite. J. Chem. Technol. Biotechnol. 2014, 89, 963–968. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Ohmichi, T.; Kamegawa, T.; Mori, K.; Yamashita, H. Synthesis of Hydroxyapatite–Zeolite Composite Material from Disposed Steel Slag and Investigation of Its Structural and Physicochemical Characteristics. Chem. Lett. 2009, 38, 626–627. [Google Scholar] [CrossRef]
- Ohenoja, K.; Pesonen, J.; Yliniemi, J.; Illikainen, M. Utilization of Fly Ashes from Fluidized Bed Combustion: A Review. Sustainability 2020, 12, 2988. [Google Scholar] [CrossRef] [Green Version]
- Uliasz-Bocheńczyk, A.; Mazurkiewicz, M.; Mokrzycki, E. Fly Ash from Energy Production—A Waste, Byproduct and Raw Material. Gospod. Surowcami Miner. 2015, 31, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The Potential of FBC Fly Ashes to Reduce CO2 Emissions. Sci. Rep. 2020, 10, 9469. [Google Scholar] [CrossRef] [PubMed]
- Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Dąbrowski, M. The Influence of Fluidized Bed Combustion Fly Ash on the Phase Composition and Microstructure of Cement Paste. Materials 2019, 12, 2838. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Goswami, L.; Singh, A.K.; Sikandar, M. Valorization of Coal Fired-Fly Ash for Potential Heavy Metal Removal from the Single and Multi-Contaminated System. Heliyon 2019, 5, e02562. [Google Scholar] [CrossRef] [Green Version]
- Bielecka, A.; Kulczycka, J. Coal Combustion Products Management toward a Circular Economy—A Case Study of the Coal Power Plant Sector in Poland. Energies 2020, 13, 3603. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über Die Adsorption in Losungen (Adsorption in Solution). Z. Für Phys. Chem. 1906, 57, 385–490. [Google Scholar]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Baran, T.; Drożdż, W.; Pichniarczyk, P. The Use of Calcareous Fly Ash in Cement and Concrete Manufacture. Cem. Wapno Beton 2012, 17, 50–56. [Google Scholar]
- Baran, T.; Drożdż, W. Evaluation of Properties of Domestic Calcareous Fly Ash and Its Processing Methods. Roads Bridges Drog. I Mosty 2013, 5–15. [Google Scholar] [CrossRef]
- Białecka, B.; Adamczyk, Z.; Cempa, M. Synthesis of Pitiglianoit and Tobermorite from Fly Ash Originating from Lignite Combustion. Gospod. Surowcami Miner. Miner. Resour. Manag. 2019, 35, 5–22. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Białecka, B.; Cempa, M.; Majka, G.; Polańska, A. Hydrothermal Activation of Fly Ash from Brown Coal Combustion. In Science and Technologies in Geology, Exploration and Mining. Iss. 1.4. Mineral Processing, Oil and Gas Exploration; STEF92 Technology Ltd.: Albena, Bulgaria, 2018; Volume 18, pp. 83–90. [Google Scholar]
- Ćwik, A.; Casanova, I.; Rausis, K.; Zarębska, K. Utilization of High-Calcium Fly Ashes through Mineral Carbonation: The Cases for Greece, Poland and Spain. J. CO2 Util. 2019, 32, 155–162. [Google Scholar] [CrossRef]
- Łukaszek-Chmielewska, A.; Girard, M.; Piotrowska, B.; Wojtkowski, K.; Isajenko, K.; Stawarz, O.; Godlewski, R. Radioactivity of Waste Materials Coming from the Largest Power Plants in Poland. E3S Web Conf. 2019, 100, 00051. [Google Scholar] [CrossRef] [Green Version]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Komath, M.; Varma, H.K. Development of a Fully Injectable Calcium Phosphate Cement for Orthopedic and Dental Applications. Bull. Mater. Sci. 2003, 26, 415–422. [Google Scholar] [CrossRef]
- Ślósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods. J. Mol. Struct. 2005, 744–747, 657–661. [Google Scholar] [CrossRef]
- Sočo, E.; Papciak, D.; Michel, M. Novel Application of Mineral By-Products Obtained from the Combustion of Bituminous Coal–Fly Ash in Chemical Engineering. Minerals 2020, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Mollah, M.Y.A.; Hess, T.R.; Cocke, D.L. Surface and Bulk Studies of Leached and Unleached Fly Ash Using XPS, SEM, EDS and FTIR Techniques. Cem. Concr. Res. 1994, 24, 109–118. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Heshajin, M.S.; Kazemzadeh, A.; Zakeri, M. Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method. J. Alloys Compd. 2007, 430, 330–333. [Google Scholar] [CrossRef]
- Lebedev, M.S.; Kozhukhova, N.I.; Chulkova, I.L. Effect of Phase and Size Characteristics of Fly Ash from Power Station on Properties of Bitumen Composites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 222, 012005. [Google Scholar] [CrossRef] [Green Version]
- Sočo, E.; Kalembkiewicz, J. Comparison of Adsorption of Cd(II) and Pb(II) Ions on Pure and Chemically Modified Fly Ashes. Chem. Process Eng. 2016, 37, 215–234. [Google Scholar] [CrossRef]
- Sobczak-Kupiec, A.; Wzorek, Z. Właściwości Fizykochemiczne Ortofosforanów Wapnia Istotnych Dla Medycyny—TCP i HAp. Czas. Techniczne. Chem. 2010, 107, 309–322. [Google Scholar]
- Skwarek, E.; Janusz, W.; Sternik, D. Adsorption of Citrate Ions on Hydroxyapatite Synthetized by Various Methods. J. Radioanal. Nucl. Chem. 2014, 299, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Adamczuk, A.; Sofinska-Chmiel, W.; Jozefaciuk, G. Arsenate Adsorption on Fly Ash, Chitosan and Their Composites and Its Relations with Surface, Charge and Pore Properties of the Sorbents. Materials 2020, 13, 5381. [Google Scholar] [CrossRef]
- Franus, W. Characterization of X-Type Zeolite Prepared from Coal Fly Ash. Pol. J. Environ. Stud. 2012, 21, 337–343. [Google Scholar]
- Alterary, S.; Marei, N.H. The Impact of Coal Fly Ash Purification on Its Antibacterial Activity. Minerals 2020, 10, 1002. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J. Activated Carbon-Fly Ash-Nanometal Oxide Composite Materials: Preparation, Characterization, and Tributyltin Removal Efficiency. J. Chem. 2013, 2013, 1–15. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J.; Akinsoji, O.S.; Petrik, L.F. Coal Fly Ash Supported NZnO for the Sorption of Triphenyltin Chloride. Arch. Environ. Prot. 2015, 41, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Mousa, S.M.; Ammar, N.S.; Ibrahim, H.A. Removal of Lead Ions Using Hydroxyapatite Nano-Material Prepared from Phosphogypsum Waste. J. Saudi Chem. Soc. 2016, 20, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Skwarek, E.; Janusz, W.; Sternik, D. The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite. Adsorpt. Sci. Technol. 2017, 35, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.N.; Kim, J.; Park, J.-S.; Chung, Y.; Han, J.; Oh, S.; Kang, S. Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites. Appl. Sci. 2021, 11, 1746. [Google Scholar] [CrossRef]
- Ragab, A.; Ahmed, I.; Bader, D. The Removal of Brilliant Green Dye from Aqueous Solution Using Nano Hydroxyapatite/Chitosan Composite as a Sorbent. Molecules 2019, 24, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suteu, D.; Rusu, G.; Zaharia, C.; Harja, M. Preliminary Studies about Rhodamine B Sorption onto Coal Ash. In Proceedings of the International Scientific Conference UNITECH’07, Gabrovo, Bulgaria, 23–24 November 2007; Technical University of Gabrovo, University Publishing House: Gabrovo, Bulgaria, 2007. [Google Scholar]
- Li, M.; Li, J.; Peng, X.; Hu, T.; Zhang, L.; Rong, X.; Xue, C.; Xu, L. Coal-Fly-Ash Magnetic Sphere Based Magnetic Adsorbent for Multiple-Dye Adsorption. Mater. Res. Express 2021, 8, 015504. [Google Scholar] [CrossRef]
- Fang, Y.; Zhou, A.; Yang, W.; Araya, T.; Huang, Y.; Zhao, P.; Johnson, D.; Wang, J.; Ren, Z.J. Complex Formation via Hydrogen Bonding between Rhodamine B and Montmorillonite in Aqueous Solution. Sci. Rep. 2018, 8, 229. [Google Scholar] [CrossRef]
- Konicki, W.; Siber, D.; Narkiewicz, U. Removal of Rhodamine B from Aqueous Solution by ZnFe2O4 Nanocomposite with Magnetic Separation Performance. Pol. J. Chem. Technol. 2017, 19, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Matias, C.A.; Guisolphi Gomes de Oliveira, L.J.; Geremias, R.; Stolberg, J. Biosorption of rhodamine b from aqueous solution using Araucaria Angustifolia sterile bracts. Rev. Int. Contam. Ambie. 2020, 36, 97–104. [Google Scholar] [CrossRef]
- Shen, K.; Gondal, M.A. Removal of Hazardous Rhodamine Dye from Water by Adsorption onto Exhausted Coffee Ground. J. Saudi Chem. Soc. 2017, 21, S120–S127. [Google Scholar] [CrossRef] [Green Version]
- Oyekanmi, A.A.; Ahmad, A.; Hossain, K.; Rafatullah, M. Adsorption of Rhodamine B Dye from Aqueous Solution onto Acid Treated Banana Peel: Response Surface Methodology, Kinetics and Isotherm Studies. PLoS ONE 2019, 14, e0216878. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahimi, N.; Tadjarodi, A. Adsorption of Rhodamine-B from Aqueous Solution by Activated Carbon from Almond Shell. Proceedings 2019, 41, 51. [Google Scholar] [CrossRef] [Green Version]
- Sočo, E.; Kalembkiewicz, J. Removal of Copper(II) and Zinc(II) Ions From Aqueous Solution by Chemical Treatment of Coal Fly Ash. Croat. Chem. Acta 2015, 88, 267–279. [Google Scholar] [CrossRef]
- Darmayanti, L.; Notodarmodjo, S.; Damanhuri, E. Removal of Copper(II) Ions in Aqueous Solutions by Sorption onto Fly Ash. J. Eng. Technol. Sci. 2017, 49, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Tang, Y.; Cai, Z. Dual Role of Coal Fly Ash in Copper Ion Adsorption Followed by Thermal Stabilization in a Spinel Solid Solution. RSC Adv. 2018, 8, 8805–8812. [Google Scholar] [CrossRef] [Green Version]
- Reczek, L.; Michel, M.M.; Świątkowski, A.; Tytkowska, M.; Trykowski, G. Studies on Lead(II) Sorption from Aqueous Solutions on Fly Ash from Combustion/Co-Combustion of Biomass. Eng. Prot. Environ. 2017, 20, 71–81. [Google Scholar] [CrossRef]
- Kadouche, S.; Zemmouri, H.; Benaoumeur, K.; Drouiche, N.; Sharrock, P.; Lounici, H. Metal Ion Binding on Hydroxyapatite (HAp) and Study of the Velocity of Sedimentation. Procedia Eng. 2012, 33, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Chen, W.; He, Z.; Li, D.; Liu, H.; Jin, H.; Zhou, G.; Xu, F. Removal of Cu(II) from Wastewater Using Doped HAP-Coated-Limestone. J. Mol. Liq. 2019, 293, 111502. [Google Scholar] [CrossRef]
- Mo, N.; Zhu, Z.; Zhu, Y.; Liu, Y.; Wang, X.; Yang, H.; Zhao, N. Purification Behavior of Zn(II) in Water by Magnesium Hydroxyapatite: Surface Complexation, and Dissolution–Precipitation. Int. J. Environ. Res. Public Health 2020, 17, 3804. [Google Scholar] [CrossRef]
- Iconaru, S.; Motelica-Heino, M.; Guegan, R.; Predoi, M.; Prodan, A.; Predoi, D. Removal of Zinc Ions Using Hydroxyapatite and Study of Ultrasound Behavior of Aqueous Media. Materials 2018, 11, 1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi Thom, N.; Thi Mai Thanh, D.; Thi Nam, P.; Thu Phuong, N.; Buess-Herman, C. Adsorption Behavior of Cd2+ Ions Using Hydroxyapatite (HAp) Powder. Green Process. Synth. 2018, 7, 409–416. [Google Scholar] [CrossRef]
- Racyte, J.; Rimeika, M.; Bruning, H. PH Effect on Decolorization of Raw Textile Wastewater Polluted with Reactive Dyes by Advanced Oxidation with U/VH2O2. Environ. Prot. Eng. 2009, 35, 167–178. [Google Scholar]
- Yaseen, D.A.; Scholz, M. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Dai, S.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.; Li, J.; Yang, P. Leaching Behavior of Trace Elements from Fly Ashes of Five Chinese Coal Power Plants. Int. J. Coal Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Soco, E.; Kalembkiewicz, J. Investigations of Sequential Leaching Behaviour of Cu and Zn from Coal Fly Ash and Their Mobility in Environmental Conditions. J. Hazard. Mater. 2007, 145, 482–487. [Google Scholar] [CrossRef]
- Sočo, E.; Kalembkiewicz, J. Investigations of Chemical Fraction of Co and Ni in Industrial Fly Ash and Mobility of Metals in Environmental Conditions. Chemosphere 2007, 67, 359–364. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Pawluk, A.; Sierka, J. Leaching of Pollutants from Fly Ash from the Combustion of Biomass. Gospod. Surowcami Miner. Miner. Resour. Manag. 2015, 31, 145–156. [Google Scholar] [CrossRef]
- Sočo, E.; Kalembkiewicz, J. Immobilizing and Removal of Cadmiumand Rhodamine B from an Aqueous Systemby Converting Solid Waste from Poland; Studiesof Equilibrium and Kinetic Sorption. Pol. J. Environ. Stud. 2020, 29, 2865–2878. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Adsorption of Rhodamine B Dye from Aqueous Solution on Irvingia Gabonensis Biomass: Kinetics and Thermodynamics Studies. S. Afr. J. Chem 2015, 68. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, L.; Liu, Z.; Zeng, Q.; Jiang, G.; Yang, M. Probing the Surface Structure of Hydroxyapatite through Its Interaction with Hydroxyl: A First-Principles Study. RSC Adv. 2018, 8, 3716–3722. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, F.; Zahid, M.; Bhatti, I.A.; Nasir, S.; Hussain, T. Possible Applications of Coal Fly Ash in Wastewater Treatment. J. Environ. Manag. 2019, 240, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Cuppett, J.D. Evaluation of Copper Speciation and Water Quality Factors That Affect Aqueous Copper Tasting Response. Chem. Senses 2006, 31, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, M.F.; Martini, G. Adsorption of the Cuprate (Cu(OH)42-) Complex on Aluminas Studied by Electron Spin Resonance. J. Phys. Chem. 1980, 84, 2310–2315. [Google Scholar] [CrossRef]
- Sočo, E.; Kalembkiewicz, J. Adsorption of Nickel(II) and Copper(II) Ions from Aqueous Solution by Coal Fly Ash. J. Environ. Chem. Eng. 2013, 1, 581–588. [Google Scholar] [CrossRef]
- Sarbak, Z.; Kramer-Wachowiak, M. Chemically Modified Wasted Fly Ash from the Konin Power Plant and Its Adsorption Properties. Pol. J. Environ. Stud. 1997, 6, 53–57. [Google Scholar]
- Campisi, S.; Castellano, C.; Gervasini, A. Tailoring the Structural and Morphological Properties of Hydroxyapatite Materials to Enhance the Capture Efficiency towards Copper(Ii) and Lead(Ii) Ions. New J. Chem. 2018, 42, 4520–4530. [Google Scholar] [CrossRef]
- Mavropoulos, E.; Rossi, A.M.; Costa, A.M.; Perez, C.A.C.; Moreira, J.C.; Saldanha, M. Studies on the Mechanisms of Lead Immobilization by Hydroxyapatite. Environ. Sci. Technol. 2002, 36, 1625–1629. [Google Scholar] [CrossRef]
CFA–HAp | Reagents | Conditions | |||
---|---|---|---|---|---|
Type | Concentration | Volume | pH | Temp. | |
CFA–HAp1 | CFA | 0.5 g/cm3 | 40 cm3 | 9 | 60 °C |
CaCl2 | 0.5 mol/dm3 | 0.5 dm3 | |||
(NH4)2HPO4 | 0.3 mol/dm3 | 0.5 dm3 | |||
CFA–HAp2 | CFA | 0.5 g/cm3 | 40 cm3 | 11 | room |
Ca(NO3)2 | 0.5 mol/dm3 | 0.5 dm3 | |||
(NH4)2HPO4 | 0.3 mol/dm3 | 0.5 dm3 | |||
CFA–HAp3 | CFA | 0.5 g/cm3 | 40 cm3 | 9 | room |
Ca(OH)2 | 0.5 mol/dm3 | 0.5 dm3 | |||
H3PO4 | 0.3 mol/dm3 | 0.5 dm3 | |||
CFA–HAp4 | CFA | 0.5 g/cm3 | 40 cm3 | 9 | room |
Ca(NO3)2 | 0.5 mol/dm3 | 0.5 dm3 | |||
(NH4)3PO4 | 0.3 mol/dm3 | 0.5 dm3 |
No. | Determination | Value | |||
---|---|---|---|---|---|
CFA–HAp1 | CFA–HAp2 | CFA–HAp3 | CFA–HAp4 | ||
1. | pHPZC | 6.43 | 6.03 | 7.16 | 6.12 |
2. | pH of water extract | 6.70 | 6.23 | 7.59 | 6.69 |
3. | Bulk density, kg/m3 | 410 | 390 | 342 | 312 |
4. | Moisture content, % (w/w) | 3.10 | 3.25 | 3.58 | 3.21 |
5. | Specific surface area, m2/g | 17.40 | 18.53 | 18.02 | 17.95 |
6. | Total pore volume, cm3/g | 0.26 | 0.28 | 0.33 | 0.34 |
7. | Average particle size, μm | 36 | 41 | 32 | 37 |
8. | Chemical composition, % (w/w): | ||||
SiO2 | 13.80 | 12.81 | 13.20 | 14.21 | |
P2O5 | 42.5 | 41.7 | 43.23 | 42.63 | |
Al2O3 | 8.79 | 8.43 | 8.57 | 8.94 | |
Fe2O3 | 6.04 | 5.92 | 5.64 | 6.13 | |
K2O | 2.16 | 2.53 | 2.72 | 2.02 | |
MgO | 1.55 | 1.21 | 1.42 | 1.63 | |
CaO | 43.7 | 42.3 | 44.42 | 43.96 | |
Na2O | 0.62 | 0.56 | 0.70 | 0.73 | |
SiO2/Al2O3 | 1.57 | 1.52 | 1.54 | 1.59 |
Element | Composite | |||
---|---|---|---|---|
CFA–HAp1 | CFA–HAp2 | CFA–HAp3 | CFA–HAp4 | |
N | 0.9 | 2.3 | 2.8 | 1.5 |
C | 13.4 | 5.5 | 4.3 | 8.8 |
S | 0.06 | 9.6 | 14.1 | 5.0 |
H | 0.5 | 1.4 | 6.8 | 5.3 |
Freundlich Isotherm | |||||
---|---|---|---|---|---|
Composite | R2 | KF, (mg/g)(L/mg)1/n | n | ||
CFA–HAp1 | 0.989 | 3.99 | 6.9 | 4.1 | |
CFA–HAp2 | 0.910 | 113 | 16.5 | 4.7 | |
CFA–HAp3 | 0.948 | 40.9 | 9.8 | 3.9 | |
CFA–HAp4 | 0.980 | 9.4 | 14.9 | 5.6 | |
Langmuir Isotherm | |||||
Composite | R2 | KL, dm3/mg | qmax, mg/g | ||
CFA–HAp1 | 0.889 | 39.7 | 9·10−3 | 44.4 | |
CFA–HAp2 | 0.923 | 97.6 | 9.2·10−2 | 73.6 | |
CFA–HAp3 | 0.830 | 134 | 8.7·10−3 | 65.9 | |
CFA–HAp4 | 0.933 | 30.6 | 0.1 | 45.3 | |
Redlich–Peterson Isotherm | |||||
Composite | R2 | KRP, dm3/g | aRP, (dm3/mg)B | B | |
CFA–HAp1 | 0.989 | 4.99 | 1.4·104 | 2·103 | 0.7 |
CFA–HAp2 | 0.964 | 56.8 | 14.8 | 0.42 | 0.9 |
CFA–HAp3 | 0.959 | 40.2 | 14.6 | 1.03 | 0.8 |
CFA–HAp4 | 0.993 | 3.9 | 11.8 | 0.70 | 0.9 |
Freundlich Isotherm | |||||
---|---|---|---|---|---|
Composite | R2 | KF, (mg/g)(L/mg)1/n | n | ||
CFA–HAp1 | 0.882 | 34.7 | 1.12 | 1.5 | |
CFA–HAp2 | 0.869 | 50.93 | 1.47 | 1.5 | |
CFA–HAp3 | 0.837 | 12.4 | 0.86 | 1.9 | |
CFA–HAp4 | 0.880 | 17.3 | 0.98 | 1.7 | |
Langmuir Isotherm | |||||
Composite | R2 | KL, dm3/mg | qmax, mg/g | ||
CFA–HAp1 | 0.939 | 18.0 | 6.22·10−3 | 73.0 | |
CFA–HAp2 | 0.922 | 30.3 | 7.82·10−3 | 87.0 | |
CFA–HAp3 | 0.932 | 5.1 | 8.64·10−3 | 27.0 | |
CFA–HAp4 | 0.958 | 6.1 | 7.02·10−3 | 42.0 | |
Redlich–Peterson Isotherm | |||||
Composite | R2 | KRP, dm3/g | aRP, (dm3/mg)B | B | |
CFA–HAp1 | 0.996 | 5.1 | 0.48 | 2.42·10−4 | 0.8 |
CFA–HAp2 | 0.989 | 9.6 | 0.74 | 3·10−3 | 0.75 |
CFA–HAp3 | 0.975 | 3.1 | 0.26 | 4·10−3 | 0.85 |
CFA–HAp4 | 0.998 | 0.8 | 0.47 | 6.1·10−3 | 0.79 |
Adsorbent | Adsorption Capacity mg/g | pH | Ref. |
---|---|---|---|
CFA–HAp composites | 27–87 | 11 | present study |
CFA | 2.4–4.25 | 1–12 | [82] |
CFA magnetic spheres–SiO2–polyaniline | 41.49 | 11 | [83] |
montmorillonite | 17.1 | - | [84] |
magnetic ZnFe2O4 nanocomposite | 12.1 | 7 | [85] |
Araucaria angustifolia sterile bracts | 36.7 | 4 | [86] |
24.6 | 8 | ||
exhausted coffee ground powder | 3.44 | 2 | [87] |
0.814 | 10 | ||
acid-modified banana peel | 9.522 | 2 | [88] |
activated carbon from almond shell | 255.39 | - | [89] |
Adsorbate | Adsorbent | Adsorption Capacity | Ref. | |
---|---|---|---|---|
mg/g | mmol/g | |||
Cu(II) | CFA–HAp composites | 44.4–73.6 | 0.699–1.16 | present study |
Cu(II) | FA from fluidized bed combustion | 8.54 | 0.134 | [91] |
FA from fixed bed combustion | 5.09 | 0.080 | ||
Cu(II) | CFA | 56.8 | 0.894 | [92] |
Pb(II) | FA from pulverized coal combustion | 8.1 | 0.039 | [70] |
Pb(II) | FAs from coal-biomass combustion | 34.8 | 0.168 | [93] |
28.9 | 0.139 | |||
Cu(II) | HAp | 31.4 | 0.494 | [94] |
Cu(II) | HAp-coated limestone | 90.90 | 1.43 | [95] |
Zn(II) | Mg–HAp | 62.11 | 0.950 | [96] |
Zn(II) | HAp nanopowder | 57.504 | 0.880 | [97] |
Pb(II) | synthetic HAp commercial HAp | 166.67 142.86 | 0.804 0.689 | [33] |
Cd(II) | synthetic HAp commercial HAp | 138.89 125 | 1.24 1.11 | [33] |
Cd(II) | HAp | 119 | 1.06 | [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sočo, E.; Papciak, D.; Michel, M.M.; Pająk, D.; Domoń, A.; Kupiec, B. Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites. Minerals 2021, 11, 774. https://doi.org/10.3390/min11070774
Sočo E, Papciak D, Michel MM, Pająk D, Domoń A, Kupiec B. Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites. Minerals. 2021; 11(7):774. https://doi.org/10.3390/min11070774
Chicago/Turabian StyleSočo, Eleonora, Dorota Papciak, Magdalena M. Michel, Dariusz Pająk, Andżelika Domoń, and Bogdan Kupiec. 2021. "Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites" Minerals 11, no. 7: 774. https://doi.org/10.3390/min11070774
APA StyleSočo, E., Papciak, D., Michel, M. M., Pająk, D., Domoń, A., & Kupiec, B. (2021). Characterization of the Physical, Chemical, and Adsorption Properties of Coal-Fly-Ash–Hydroxyapatite Composites. Minerals, 11(7), 774. https://doi.org/10.3390/min11070774