The Temperature of Halite Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction of the Carpathian Area
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
5. Interpretation and Discussion
5.1. A Model of the Badenian Salt-Bearing Basins without Thermocline
5.2. A Model of a Relative Depth of the Badenian Salt-Bearing Basins with a Pronounced Thermocline
6. Conclusions
- Growth of bottom halite from cooled supersaturated near-surface brines, which, due to rapid cooling in the evening and at night, became heavier and dropped to the bottom of the basin.
- Growth of bottom halite in basins with a pronounced thermocline. The model of ancient salt-bearing basins with a pronounced thermocline had a higher priority for explaining all sedimentation features. Some differences in the obtained crystallization temperatures of the bottom halite were associated with crystallization at various depths of the sedimentation basin bottom.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Leeuw, A.; Bukowski, K.; Krijgsman, W.; Kuiper, K.F. Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 2010, 38, 715–718. [Google Scholar] [CrossRef]
- Peryt, T.M. The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sediment. Geol. 2006, 188–189, 379–396. [Google Scholar] [CrossRef]
- Roedder, E. The fluids in salt. Am. Mineral. 1984, 69, 413–439. [Google Scholar]
- Hollister, L.S.; Crawford, M.L.; Roedder, E.; Burruss, R.C.; Spooner, E.T.C.; Touret, J. Practical aspects of microthermometry. Mineral. Assoc. Can. Short Course 1981, 6, 13–38. [Google Scholar]
- Shepherd, T.J.; Rankin, A.H.; Alderton, D.H.M. A Practical Guide to Fluid Inclusion Studies; Blackie & Son: Glasgow, UK, 1986; 239p. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 1994, 31, 199. [Google Scholar]
- Goldstein, R.H. Petrographic analysis of fluid inclusions. Mineral. Assoc. Can. Short Course 2003, 32, 9–53. [Google Scholar]
- Bodnar, R.J. Introduction to fluid inclusions. Mineral. Assoc. Can. Short Course 2003, 32, 1–8. [Google Scholar]
- Zambito, J.; Benison, K. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology 2013, 41, 587–590. [Google Scholar] [CrossRef]
- Zhang, H.; Lü, F.; Mischke, S.; Fan, M.; Zhang, F.; Liu, C. Halite fluid inclusions and the late Aptian sea surface temperature the Congo Basin, northern South Atlantic Ocean. Cretac. Res. 2017, 71, 85–95. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.; Cao, Y.; Zhang, H. Quantitative temperature recovery from middle Eocene halite fluid inclusions in the easternmost Tethys realm. Int. J. Earth Sci. Geol. Rundsch. 2018. [Google Scholar] [CrossRef]
- Li, M.; Sun, S.; Yan, M.; Meng, F.; Fang, X.; Song, X.; Zhu, L. Late Cretaceous paleoclimate reconstruction from halite in an evaporite deposit on the Khorat Plateau, Laos. Cretac. Res. 2020, 116, 104589. [Google Scholar] [CrossRef]
- Papp, A.; Cicha, I. Definition der Zeiteinheit M [4]-Badenien. Chronostratigraphie Und Neostratotypen Miozän Zent. Paratethys 1978, 6, 47–48. [Google Scholar]
- Hohenegger, J.; Ćorić, S.; Wagreich, M. Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geol. Carpathica 2014, 65, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Abels, H.A.; Hilgen, F.J.; Krijgsman, W.; Kruk, R.W.; Raffi, I.; Turco, E.; Zachariasse, W.J. Long-period orbital control on middle Miocene global cooling. Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 2005, 20, 1–17. [Google Scholar] [CrossRef]
- John, C.M.; Karner, G.D.; Browning, E.; Leckie, R.M.; Mateo, Z.; Carson, B.; Lowery, C. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin. Earth Planet. Sci. Lett. 2011, 304, 455–467. [Google Scholar] [CrossRef]
- Simon, D.; Palcu, D.; Meijer, P.; Krijgsman, W. The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe. Geology 2019, 47, 35–38. [Google Scholar] [CrossRef]
- Palcu, D.V.; Golovina, L.A.; Vernyhorova, Y.V.; Popov, S.V.; Krijgsman, W. Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration. Glob. Planet. Chang. 2017, 158, 57–71. [Google Scholar] [CrossRef]
- Peryt, D.; Gedl, P.; Peryt, T.M. Marine transgression(s) to evaporite basin: The case of middle Miocene (Badenian) gypsum in the Central Paratethys, SE Poland. J. Palaeogeogr. 2020, 9, 16. [Google Scholar] [CrossRef]
- De Leeuw, A.; Tulburec, M.; Kuiper, K.F.; Melinte-Dobrinescu, M.C.; Stoica, M.; Krijgsman, W. New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian salinity crisis: Indications for tectonic improvement of basin interconnectivity in southern Europe. Glob. Planet. Chang. 2018, 169, 1–15. [Google Scholar] [CrossRef]
- Śliwiński, M.; Bąbel, M.; Nejbert, K.; Olszewska-Nejbert, D.; Gąsiewicz, A.; Schreiber, B.C.; Be-Nowitz, J.A.; Layer, P. Badenian–Sarmatian chronostratigraphy in the Polish Carpathian Foredeep. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 326–328, 12–29. [Google Scholar] [CrossRef]
- Garlicki, A. Sedimentation of Miocene Salts in Poland; Prace Geologiczne PAN: Kraków, Poland, 1979; Volume 119, (In Polish with English Summary). [Google Scholar]
- Krézsek, C.s.; Filipescu, S. Middle to Late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophisics 2005, 410, 437–463. [Google Scholar] [CrossRef] [Green Version]
- Krézsek, C.; Bally, A.W. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Mar. Pet. Geol. 2006, 23, 405–442. [Google Scholar] [CrossRef]
- Bukowski, K.; Czapowski, G.; Karoli, S.; Bąbel, M. Sedimentology and geochemistry of the Middle Miocene (Badenian) salt-bearing succession from East Slovakian Basin (Zbudza Formation). In Evaporites through Space and Time; Schreiber, B.C., Lugli, S., Bąbel, M., Eds.; Special Publications; Geological Society: London, UK, 2007; Volume 285, pp. 247–264. [Google Scholar]
- Báldi, K.; Velledits, F.; Ćorić, S.; Lemberkovics, V.; Lõrincz, K.; Shevelev, M. Discovery of the Badenian evaporites in side the Carpathian Arc: Implications for global climate change and Paratethys salinity. Geol. Carpathica 2017, 68, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Ćorić, S.; Vrabac, S.; Ferhatbegović, Z.; Ðulović, I. Biostratigraphy of Middle Miocene Sediments from the Tuzla Basin (North-eastern Bosnia) Based on Foraminifera and Calcareous Nannoplankton. Neogene Cent. South East. Eur. 2007, 2, 21–23. [Google Scholar]
- Khrushchov, D.P. Lithology and Geochemistry of Saliferous Formations of the Carpathian Foredeep; Naukova Dumka: Kyiv, Ukraine, 1980; pp. 1–316. (In Russian) [Google Scholar]
- Rögl, F. Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann. Des. Nat. Mus. Wien 1998, 99A, 279–310. [Google Scholar]
- Bąbel, M. Badenian Evaporite Basin of the Northern Carpathian Foredeep as a Drawdown Salina Basin. Acta Geol. Pol. 2004, 54, 313–337. [Google Scholar]
- Kovač, M.; Hudáčková, N.; Halásová, E.; Kováčová, M.; Holcová, K.; Oszczypko-Clowes, M.; Báldi, K.; Less, G.; Nagymarosy, A.; Ruman, A.; et al. The Central Paratethys palaeoceanography: A water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geol. Slovaca 2017, 9, 75–114. [Google Scholar]
- Oszczypko, N.; Krzywiec, P.; Popadyuk, I.; Peryt, T. Carpathian Foredeep Basin (Poland and Ukraine). Its Sedimentary, Structural, and Geodynamic Evolution. AAPG Mem. 2006, 84, 261–318. [Google Scholar]
- Burov, V.S.; Glushko, V.V.; Pishvanova, L.S. Neogene deposits of the Precarpathian Trough. Geological structure and fossil fuels of the Ukrainian Carpathians. Tr. Ukr. NIGRI 1971, 25, 42–54. (In Russian) [Google Scholar]
- Vyalov, O.S. Stratigraphy of Neogene Molasses of the Ciscarpathian Trough; Naukova Dumka: Kyiv, Ukraine, 1965; pp. 1–58. (In Russian) [Google Scholar]
- Bukowski, K. Badenian Saline Sedimentation between Rybnik and Dębica Based on Geochemical, Isotopic, and Radiometric Research. Diss. Monogr. 2011, 236, 1–184, (In Polish with English Summary). [Google Scholar]
- Krzywiec, P.; Bukowski, K.; Oszczypko, N.; Garlicki, A. Structure and Miocene evolution of the Gdów tectonic “embayment” (Polish Carpathian Foredeep)—A new model based on reinterpreted seismic data. Geol. Q. 2012, 56, 907–920. [Google Scholar] [CrossRef] [Green Version]
- Poborski, J. Złoże solne Bochni na tle geologicznym okolicy. Biul. Państw. Inst. Geol. 1952, 78, 1–160, (In Polish with English Summary). [Google Scholar]
- Gaweł, A. Budowa geologiczna złoża solnego Wieliczki. Prace Inst. Geol. 1962, 30, 305–331, (In Polish with English Summary). [Google Scholar]
- Czapowski, G.; Bukowski, K. Geology and resources of salt deposits in Poland: The state of the art. Geol. Q. 2010, 54, 509–518. [Google Scholar]
- Bukowski, K. Comparison of the Badenian saliferous series from Wieliczka and Bochnia in the light of new data. Prace Panstw. Inst. Geol. 1999, 168, 43–56, (In Polish with English Summary). [Google Scholar]
- Rowan, M.; Krzywiec, P.; Bukowski, K.; Przybyło, J. Nature and origin of large-scale and intrasalt deformation within the Wieliczka salt mine, Poland. Geol. Q. 2020, 64, 819–837. [Google Scholar] [CrossRef]
- Hryniv, S.P.; Dolishniy, B.V.; Khmelevska, O.V.; Poberezhskyy, A.V.; Vovnyuk, S.V. Evaporites of Ukraine: A review. In Evaporites through Space and Time; Schreiber, B.C., Lugli, S., Bąbel, M., Eds.; Special Publications; Geological Society: London, UK, 2007; Volume 285, pp. 309–334. [Google Scholar]
- Korenevskiy, S.M.; Zaharova, V.M.; Shamahov, V. Miocene Saliferous Formations of the Carpathian Foredeep; Nedra: Leningrad, Russia, 1997; pp. 1–248. (In Russian) [Google Scholar]
- Andreyeva-Grigorovich, A.S.; Oszczypko, N.; Savitskaya, N.A.; Ślączka, A.; Trofimovich, N.A. Correlation of Late Badenian salts of the Wieliczka, Bochnia and Kalush areas (Polish and Ukrainian Carpathian Foredeep). Ann. Soc. Geol. Pol. 2003, 73, 67–89. [Google Scholar]
- Bukowski, K.; Czapowski, G. Salt geology and mining traditions: Kalush and Stebnyk mines (Fore-Carpathian region, Ukraine). Geotourism Geoturystyka 2009, 3, 27–34. [Google Scholar] [CrossRef]
- Pishvanova, L.S. New microfaunistic zone in the Fore-Carpathian region—The Giobigerina bollii zone. Bul. MOIP. Dept. Geol. 1966, 41, 94–97. (In Russian) [Google Scholar]
- Peryt, T.M.; Kovalevich, V.M. Association of redeposited salt breccias and potash evaporites in the lower Miocene of Stebnyk (Carpathian Foredeep, West Ukraine). J. Sediment. Res. 1997, A67, 913–922. [Google Scholar]
- Schleder, Z.; Tamas, D.M.; Krezsek, C.; Arnberger, K.; Tulucan, A. Salt tectonics in the Bend Zone segment of the Carpathian fold and thrust belt, Romania. Int. J. Earth Sci. 2019, 108, 1595–1614. [Google Scholar] [CrossRef]
- Stefanescu, M.; Dicea, O.; Tari, G. Influence of extension and compression on salt diapirism in its type area, East Carpathian Bend area, Romania. In Salt, Shale and Igneous Diapirs in and around Europe; Vendeville, B.C., Mart, Y., Vigneresse, J.L., Eds.; Geological Society: London, UK, 2000; pp. 131–147. [Google Scholar]
- Har, N.; Barbu, O.; Codrea, V.; Petrescu, I. New data on the mineralogy of the salt deposit from Slănic Prahova (Romania). Studia Univ. Babeş Bolyai Geol. 2006, 51, 29–33. [Google Scholar] [CrossRef]
- Bojar, A.-V.; Barbu, V.; Wojtowicz, A.; Bojar, H.-P.; Hałas, S.; Duliu, O.G. Miocene Slănic Tuff, Eastern Carpathians, Romania, in the Context of Badenian Salinity Crisis. Geosciences 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Vass, D.; Elečko, M.; Janočko, J.; Karoli, S.; Pereszlenyi, M.; Slávik, J.; Kaličiak, M. Paleogeography of the East-Slovakian Basin. Slovak Geol. Mag. 2000, 6, 377–407. [Google Scholar]
- Vass, D.; Čverčko, J. Litostratigrafické jadnotky neogénu východoslovenskej nížiny. Geologicke Práce Správy Bratisl. 1985, 82, 111–116. (In Slovak) [Google Scholar]
- Karoli, S.; Janočko, J.; Kotulák, P.; Verdon, P. Sedimentology of Karpatian evaporites in the East-Slovakian Basin (Slovakia). Slovak Geol. Mag. 1997, 3, 201–211. [Google Scholar]
- Galamay, A.R.; Karoli, S. Geochemistry of the Badenian salts from the East Slovakian Basin, Slovakia. Slovak Geol. Mag. 1997, 3, 187–192. [Google Scholar]
- Har, N.; Rusz, O.; Codrea, V.; Barbu, O. New data on the mineralogy of the salt deposit from Sovata (Mureş County-Romania). Carpathian J. Earth Environ. Sci. 2010, 5, 127–135. [Google Scholar]
- Gašparič, R.; Hyžný, M.; Jovanović, G.; Ćorić, S.; Vrabac, S. Middle Miocene decapod crustacean assemblage from the Tuzla Basin (Tušanj, Bosnia and Herzegovina), with a description of two new species and comparison with coeval faunas from Slovenia. Palaeontol. Electron. 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl-H2O fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Virginia Polytechnic Institute State University: Blacksburg, VA, USA, 1994; pp. 117–131. [Google Scholar]
- Bodnar, R.J. Reequilibration of fluid inclusions. Fluid Incl. Anal. Interpret. Short Course 2003, 32, 213–231. [Google Scholar]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Goldfarb, R.J.; Yuan, W.M.; Weinberg, R.F.; Zhang, R.Z. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 165–178. [Google Scholar] [CrossRef]
- Galamay, A.R.; Meng, F.; Bukowski, K.; Lyubchak, A.; Zhang, Y.; Ni, P. Calculation of salt basin depth using fluid inclusions in halite from the Ordovician Ordos basin in China. Geol. Q. 2019, 63, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Kovalevych, V.M. Physicochemical Conditions of Salt Formation in the Stebnik Potash Deposit; Naukova Dumka: Kyiv, Ukraine, 1978; pp. 1–100. (In Russian) [Google Scholar]
- Petrichenko, O.I. Physico-Chemical Conditions of Sedimentation in Ancient Salt-Bearing Basins; Naukova Dumka: Kyiv, Ukraine, 1988; pp. 1–128. (In Russian) [Google Scholar]
- Roberts, S.M.; Spencer, R.J. Paleotemperatures preserved іn fluіd іnclusіons іn halіte. Geochіm. Cosmochіm. Acta 1995, 59, 3929–3942. [Google Scholar] [CrossRef]
- Galamay, A.R.; Sidor, D.; Lyubchak, O. Peculiarities of the appearance of the gas phase in single-phase liquid inclusions in halite (to determine the temperature of its crystallization). VIII Sciences. In Proceedings of the Mineralogy: Present and Future, Lviv-Chinadiyeve, Lviv, Ukraine, 11–14 September 2014; pp. 34–36. (In Ukrainian). [Google Scholar]
- Shanina, S.N.; Sokerinа, N.V.; Galamay, A.R.; Ledentsov, V.N.; Onosov, D.V. Homogenizing temperature test for halite from Yakshinskoe deposit. Vestn. I.G. Komi SC UB R.A.S. 2014, 8, 3–6, (In Russian with English Summary). [Google Scholar]
- Acros, D.; Ayora, C. The use of fluіd іnclusіons іn halіte as envіronmental thermometer: An experіmental study. In Proceedings of the European Current Research on Fluid Inclusions, Nancy, France, 1–4 July 1997; Boiron, M.C., J. Pironon, J., Eds.; Université de Lorraine—CNRS: Nancy, France, 1997; pp. 10–11. [Google Scholar]
- Kalyuzhny, V.A. Methods of Studying Multiphase Inclusions in Minerals; Academy of Sciences of the USSR: Kyiv, Ukraine, 1960; pp. 1–169. (In Russian) [Google Scholar]
- Zinchuk, I.M. Geochemistry of Mineral-Forming Solutions of Gold-Polymetallic Ore Occurrences of Central Donbas (According to Inclusions in Minerals). Ph.D. Thesis, IGGGK NAS of Ukraine, Lviv, Ukraine, 2003. [Google Scholar]
- Dellwig, L.F. Orіgіn of the Salіna salt of Mіchіgan. J. Sed. Petrol. 1955, 25, 83–110. [Google Scholar]
- Lowenstein, T.K.; Hardie, L.A. Criteria for the recognition of salt-pan evaporates. Sedimentology 1985, 32, 627–644. [Google Scholar] [CrossRef]
- Davis, D.; Lowenstein, T.; Spencer, R. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochіm. Cosmochіm. Acta 1990, 54, 591–601. [Google Scholar] [CrossRef]
- Galamay, A.R.; Bukowski, K.; Poberezhskyy, A.V.; Karoli, S.; Kovalevich, V.M. Origin of the Badenian salt from East Slovakian basin indicated by based on the analysis of fluid inclusions. Ann. Soc. Geol. Pol. 2004, 74, 267–276. [Google Scholar]
- Shaidetska, V.S. The geochemistry of Neogene evaporites of Transcarpathian troughin Ukraine. Slovak Geol. Mag. 1997, 3, 193–200. [Google Scholar]
- Bukowski, K.; Galamay, A.R.; Krzywiec, P.; Maksym, A. Geochemical Data and Fluid Inclusion Study of the Middle Miocene Halite from Deep Borehole Huwniki-1, Situated in the Inner Zone of the Carpathian Foredeep in Poland. Minerals 2020, 10, 1113. [Google Scholar] [CrossRef]
- Galamay, A.R.; Bukowski, K. Chemical composition of Badenian brines from primary fluid inclusions in halite (Transcarpathian Basin, Ukraine). Geol. Kwart. A.G.H. 2011, 37, 245–267, (In Polish with English Summary). [Google Scholar]
- Petrichenko, O.I. Methods of Study of Inclusions in Minerals of Saline Deposits; Naukova Dumka: Kyiv, Ukraine, 1973; pp. 1–90. [Google Scholar]
- Sirota, I.; Enzel, Y.; Lensky, N.G. Temperature seasonality control on modern halite layers in the Dead Sea: In situ observations. G.S.A. Bull. 2017, 129, 1181–1194. [Google Scholar] [CrossRef]
- Lowenstein, T.; Li, J.; Brownet, C. Paleotemperatures from fluid inclusions in halite: Method verification and a 100,000 years paleotemperature record, Death Valley, CA. Chem. Geol. 1998, 150, 223–245. [Google Scholar] [CrossRef]
- Valyashko, M.G. Halite, its main varieties found in salt lakes, and their structure. Tr. Vses. Mauchno-Issled. Inst. Galurgii 1952, 23, 25–32. (In Russian) [Google Scholar]
- Galamay, A.R.; Bukowski, K.; Sydor, D.V.; Meng, F. The Ultramicrochemical Analyses (UMCA) of Fluid Inclusions in Halite and Experimental Research to Improve the Accuracy of Measurement. Minerals 2020, 10, 823. [Google Scholar] [CrossRef]
- Valiashko, M.G. The Principle of Forming of Salt Deposits; M.G.U.: Moscow, Russia, 1962; 396p. (In Russian) [Google Scholar]
- Strakhov, N.M. Principles of Lithogenesis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Benison, K.C.; Goldstein, R.H. Permian paleoclimate data from fluid inclusions in halite. Chem. Geol. 1999, 154, 113–132. [Google Scholar] [CrossRef]
- Satterfield, C.L.; Lowenstein, T.K.; Russell, V.; Vreeland, R.; Rosenzweig, W.D. Paleobrine Temperatures, Chemistries, and Paleoenvironments of Silurian Salina Formation F-1 Salt, Michigan Basin, USA, from Petrography and Fluid Inclusions in Halite. J. Sediment. Res. 2005, 75, 534–546. [Google Scholar] [CrossRef]
- Bukowski, K. Sedimentation of clastic strata associated with Miocene salts in Wieliczka (Southern Poland). Slovak Geol. Mag. 1997, 3, 157–164. [Google Scholar]
- Ślączka, A.; Kolasa, K. Resedimented salt in the Northern Carpathians Foredeep (Wieliczka, Poland). Slovak Geol. Mag. 1997, 3, 135–155. [Google Scholar]
- Gonera, M.; Bukowski, K.; D’Obryn, K.; Wiewiórka, J. Foraminifera in slump deposits of the Badenian (middle Miocene) Green Stratified Salt in Wieliczka, Poland. Geol. Q. 2012, 56, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Głuszyński, A.; Aleksandrowski, P. A deep paleovalley in the floor of the Polish Carpathian Foredeep basin near Pilzno and its control on Badenian (Middle Miocene) evaporite facies. Geol. Q. 2016, 60, 493–516. [Google Scholar]
- Gonera, M.; Bukowski, K. Isotopic events in the Early/Middle Badenian (Miocene) of the Upper Silesia Basin (Central Paratethys). Geol. Q. 2012, 56, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Hilgen, F.J.; Lourens, L.J.; Van Dam, J.A.; Beu, A.G.; Boyes, A.F.; Cooper, R.A.; Krijgsman, W.; Ogg, J.G.; Piller, W.E.; Wilson, D.S. The Neogene period. In The Geologic Time Scale 2012; Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Böhme, M. The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, F.; Holcová, K.; Milovský, R.; Kuhnert, H. Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the Middle Miocene Climate Transition based on Mg/Ca, δ18O and δ13C from foraminiferal tests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 495, 60–71. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galamay, A.R.; Bukowski, K.; Zinchuk, I.M.; Meng, F. The Temperature of Halite Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction of the Carpathian Area. Minerals 2021, 11, 831. https://doi.org/10.3390/min11080831
Galamay AR, Bukowski K, Zinchuk IM, Meng F. The Temperature of Halite Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction of the Carpathian Area. Minerals. 2021; 11(8):831. https://doi.org/10.3390/min11080831
Chicago/Turabian StyleGalamay, Anatoliy R., Krzysztof Bukowski, Igor M. Zinchuk, and Fanwei Meng. 2021. "The Temperature of Halite Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction of the Carpathian Area" Minerals 11, no. 8: 831. https://doi.org/10.3390/min11080831
APA StyleGalamay, A. R., Bukowski, K., Zinchuk, I. M., & Meng, F. (2021). The Temperature of Halite Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction of the Carpathian Area. Minerals, 11(8), 831. https://doi.org/10.3390/min11080831