Organic and Isotopic Geochemistry of Evaporites and Shales of the Santana Group (Araripe Basin, Brazil): Clues on the Evolution of Depositional Systems and Global Correlation during the Lower Cretaceous
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. Methods
3.2.1. TOC and TS
3.2.2. Rock-Eval Pyrolysis
3.2.3. Sulfur Isotope Analysis
4. Results and Interpretations
4.1. Chemostratigraphic Units
4.1.1. Unit A
4.1.2. Unit B
4.1.3. Unit C
4.1.4. Unit D
4.1.5. Unit E
4.2. Relationship between Total Organic Carbon and Total Sulfur
4.3. Organic Matter Type
4.4. Sulfur Isotopic Clues
4.5. Global Correlation Based on the Oceanic Anoxic Events
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardie, L.A. Evaporites; marine or non-marine? Am. J. Sci. 1984, 284, 193–240. [Google Scholar] [CrossRef]
- Hardie, L.A. On the Significance of Evaporites. Annu. Rev. Earth Planet. Sci. 1991, 19, 131–168. [Google Scholar] [CrossRef]
- Horita, J.; Zimmermann, H.; Holland, H.D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 2002, 66, 3733–3756. [Google Scholar] [CrossRef]
- Hay, W.W.; Migdisov, A.; Balukhovsky, A.N.; Wold, C.N.; Flögel, S.; Söding, E. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 240, 3–46. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Denison, R.E.; Kirkland, D.W.; Evans, R. Using Strontium Isotopes to Determine the Age and Origin of Gypsum and Anhydrite Beds. J. Geol. 1998, 106, 1–18. [Google Scholar] [CrossRef]
- Ayora, C.; Taberner, C.; Pierre, C.; Pueyo, J.-J. Modeling the sulfur and oxygen isotopic composition of sulfates through a halite-potash sequence: Implications for the hydrological evolution of the Upper Eocene Southpyrenean basin. Geochim. Cosmochim. Acta 1995, 59, 1799–1808. [Google Scholar] [CrossRef]
- Taberner, C.; Cendón, D.; Pueyo, J.; Ayora, C. The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins. Sediment. Geol. 2000, 137, 213–240. [Google Scholar] [CrossRef]
- Gindre-Chanu, L.; Warren, J.K.; Puigdefàbregas, C.; Sharp, I.R.; Peacock, D.C.P.; Swart, R.; Poulsen, R.; Ferreira, H.; Henrique, L. Diagenetic evolution of Aptian evaporites in the Namibe Basin (south-west Angola). Sedimentology 2014, 62, 204–233. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, G.; Gu, J.; Wang, P.; Huang, Q.; Feng, Z.; Feng, L. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records. Palaeogeogr. Palaeoclim. Palaeoecol. 2013, 385, 152–161. [Google Scholar] [CrossRef]
- Holmer, M.; Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 2001, 46, 431–451. [Google Scholar] [CrossRef]
- Yücel, M.; Konovalov, S.K.; Moore, T.S.; Janzen, C.P.; Luther, G.W. Sulfur speciation in the upper Black Sea sediments. Chem. Geol. 2010, 269, 364–375. [Google Scholar] [CrossRef]
- Zerkle, A.L.; Kamyshny, A.; Kump, L.R.; Farquhar, J.; Oduro, H.; Arthur, M.A. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: Constraints from quadruple S isotopes. Geochim. Cosmochim. Acta 2010, 74, 4953–4970. [Google Scholar] [CrossRef]
- Johnston, D.T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 2011, 106, 161–183. [Google Scholar] [CrossRef]
- Pang, Y.; Guo, X.; Shi, B.; Zhang, X.; Cai, L.; Han, Z.; Chang, X.; Xiao, G. Hydrocarbon Generation Evaluation, Burial History, and Thermal Maturity of the Lower Triassic–Silurian Organic-Rich Sedimentary Rocks in the Central Uplift of the South Yellow Sea Basin, East Asia. Energy Fuels 2020, 34, 4565–4578. [Google Scholar] [CrossRef]
- Anderson, T.F.; Pratt, L.M. Isotopic Evidence for the Origin of Organic Sulfur and Elemental Sulfur in Marine Sediments. ACS Sympos. Ser. 1995, 378–396. [Google Scholar]
- Suits, N.S.; Wilkin, R. Pyrite formation in the water column and sediments of a meromictic lake. Geology 1998, 26, 26. [Google Scholar] [CrossRef]
- Canfield, D. Biogeochemistry of Sulfur Isotopes. Rev. Miner. Geochem. 2001, 43, 607–636. [Google Scholar] [CrossRef]
- Werne, J.P.; Lyons, T.W.; Hollander, D.J.; Formolo, M.J.; Damste, J.S. Reduced sulfur in euxinic sediments of the Cariaco Basin: Sulfur isotope constraints on organic sulfur formation. Chem. Geol. 2003, 195, 159–179. [Google Scholar] [CrossRef]
- Chen, G.; Chang, X.; Gang, W.; Wang, N.; Zhang, P.; Cao, Q.; Xu, J. Anomalous positive pyrite sulfur isotope in lacustrine black shale of the Yanchang Formation, Ordos Basin: Triggered by paleoredox chemistry changes. Mar. Pet. Geol. 2020, 121, 104587. [Google Scholar] [CrossRef]
- Farquhar, J.; Johnston, D.T.; Wing, B.A.; Habicht, K.S.; Canfield, D.; Airieau, S.; Thiemens, M.H. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biological signatures in the sulphur isotope record. Geobiology 2003, 1, 27–36. [Google Scholar] [CrossRef]
- Canfield, D.; Farquhar, J.; Zerkle, A. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geobiology 2010, 38, 415–418. [Google Scholar] [CrossRef]
- Kleeberg, A. Interactions between Benthic Phosphorus Release and Sulfur Cycling in Lake Scharmützelsee (Germany). Water Air Soil Pollut. 1997, 99, 391–399. [Google Scholar] [CrossRef]
- Ries, J.B.; Fike, D.; Pratt, L.M.; Lyons, T.W.; Grotzinger, J.P. Superheavy pyrite (34Spyr > 34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life. Geology 2009, 37, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Chen, D.; Wang, Q.; Wang, J. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition. Chem. Geol. 2012, 291, 69–78. [Google Scholar] [CrossRef]
- Bobco, F.E.R.; Goldberg, K.; Bardola, T.P. Modelo deposicional do Membro Ipubi (Bacia do Araripe, nordeste do Brasil) a partir da caracterização faciológica, petrográfica e isotopica dos evaporitos. Pesqui. Geociênc. 2018, 44, 431–451. [Google Scholar] [CrossRef]
- Goldberg, K.; Premaor, E.; Bardola, T.; Souza, P.A. Aptian marine ingression in the Araripe Basin: Implications for paleogeographic reconstruction and evaporite accumulation. Mar. Pet. Geol. 2019, 107, 214–221. [Google Scholar] [CrossRef]
- Arai, M.; Assine, M.L. Chronostratigraphic constraints and paleoenvironmental interpretation of the Romualdo Formation (Santana Group, Araripe Basin, Northeastern Brazil) based on palynology. Cretac. Res. 2020, 116, 104610. [Google Scholar] [CrossRef]
- Foöllmi, K.B.; Weissert, H.; Bisping, M.; Funk, H. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolu-tion along the Lower Cretaceous northern Tethyan margin. Geol. Soc. Am. Bull. 1994, 106, 729–746. [Google Scholar] [CrossRef]
- Weissert, H.; Lini, A.; Föllmi, K.B.; Kuhn, O. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 137, 189–203. [Google Scholar] [CrossRef]
- Wissler, L.; Funk, H.; Weissert, H. Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 200, 187–205. [Google Scholar] [CrossRef]
- Simone, L.; Bravi, S.; Carannante, G.; Masucci, I.; Pomoni-Papaioannou, F. Arid versus wet climatic evidence in the “middle Cretaceous” calcareous successions of the Southern Apennines (Italy). Cretac. Res. 2012, 36, 6–23. [Google Scholar] [CrossRef]
- Westermann, S.; Stein, M.; Matera, V.; Fiet, N.; Fleitmann, D.; Adatte, T.; Föllmi, K.B. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event. Geochim. Cosmochim. Acta 2013, 121, 467–486. [Google Scholar] [CrossRef]
- Föllmi, K.B.; Godet, A.; Bodin, S.; Linder, P. Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 2006, 21, 21. [Google Scholar] [CrossRef] [Green Version]
- De Souza, A.C.B.; Nascimento, D.R.D.; Filho, F.N.; Batezelli, A.; dos Santos, F.H.; Oliveira, K.M.L.; de Almeida, N.M. Sequence stratigraphy and organic geochemistry: An integrated approach to understand the anoxic events and paleoenvironmental evolution of the Ceará basin, Brazilian Equatorial margin. Mar. Pet. Geol. 2021, 129, 105074. [Google Scholar] [CrossRef]
- Assine, M.L.; Perinotto, J.D.J.; Custódio, M.A.; Neumann, V.H.; Varejão, F.G.; Mescolotti, P.C. Sequências deposicionais do andar Alagoas da Bacia do Araripe, nordeste do Brasil. Bol. Geociênc. Petrobras 2014, 22, 3–28. [Google Scholar]
- Martill, D.M.; Bechly, G.; Loveridge, L.F. The Crato Fossil Beds of Brazil; Cambridge University Press: Cambridge, UK, 2007; Volume 1, ISBN 978-0-521-85867-0. [Google Scholar]
- Maisey, J.G. Santana Fossils: An Illustrated Atlas; TFH Publications Incorporated: Neptune, NJ, USA, 1991; Volume 242, ISBN 978-0-866-225-496. [Google Scholar]
- Kellner, A.W.A.; Schobbenhaus, C.; Campos, D.A.; Queiroz, E.T.; Winge, M.; Berbert-Born, M.L.C. Membro Romualdo da Formação Santana, Chapada do Araripe, CE. Um dos mais importantes depósitos fossilíferos do Cretáceo brasileiro. Sítios Geol. Paleontol. Bras. 2002, 1, 121–130. [Google Scholar]
- Martill, D.M.; Bechly, G.; Loveridge, R.F. Introduction to the Crato Formation. Crato Fossil Beds Braz. 2009, 3–7. [Google Scholar] [CrossRef]
- Martill, D.M.; Loveridge, R.; Heimhofer, U. Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian–Early Albian), Araripe Basin, northeast Brazil: Further evidence for hypersalinity. Cretac. Res. 2007, 28, 613–620. [Google Scholar] [CrossRef]
- Martill, D. The age of the Cretaceous Santana Formation fossil Konservat Lagerstätte of north-east Brazil: A historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota. Cretac. Res. 2007, 28, 895–920. [Google Scholar] [CrossRef]
- De Matos, R.M.D.; Krueger, A.; Norton, I.; Casey, K. The fundamental role of the Borborema and Benin–Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system. Mar. Pet. Geol. 2021, 127, 104872. [Google Scholar] [CrossRef]
- Assine, M.L. Sedimentação e Tectônica da Bacia do Araripe, Nordeste do Brasil. Ph.D. Thesis, Universidade Estadual Paulista, Rio Claro, Brazil, 1990. [Google Scholar]
- De Matos, R.M.D. The Northeast Brazilian Rift System. Tectonics 1992, 11, 766–791. [Google Scholar] [CrossRef]
- Ponte, F.C.; Ponte Filho, F.C. Evolução Tectônica e Classificação da Bacia do Araripe; Report of the Departamento Nacional de Produção Mineral: Recife, Brazil, 1996; p. 68. [Google Scholar]
- Neumann, V.H.; Assine, M.L. Stratigraphic proposal to the post-rift I tectonic-sedimentary sequence of Araripe Basin, Northeastern Brazil. In Proceedings of the International Congress on Stratigraphy, Graz, Austria, 19–23 July 2015; Volume 2, p. 274. [Google Scholar]
- Assine, M.L. Bacia do Araripe. Bol. Geociênc. Petrobras 2007, 15, 371–389. [Google Scholar]
- Neumann, V.H.; Cabrera, L. Características hidrogeológicas gerais, mudanças de salinidade e caráter endorreico do Sistema lacustre Cretáceo do Araripe, NE Brasil. Rev. Geolog. 2002, 15, 43–54. [Google Scholar]
- Fambrini, G.L.; Silvestre, D.D.C.; Junior, A.M.B.; Da Silva-Filho, W.F. Estratigrafia da Bacia do Araripe: Estado da arte, revisão crítica e resultados novos. Geol. USP Série Cient. 2020, 20, 169–212. [Google Scholar] [CrossRef]
- Hashimoto, A.T.; Appi, C.J.; Soldan, A.L.; Cerqueira, J.R. O neo-Alagoas nas bacias do Ceará, Araripe e Potiguar (Brasil): Caracterização estratigráfica e paleoambiental. Rev. Bras. Geociênc. 1987, 17, 118–122. [Google Scholar] [CrossRef]
- Neumann, V.H.M.L. Estratigrafía, Sedimentología, Geoquímica y Diagénesis de los Sistemas Lacustres Aptienses-Albienses de la Cuenca de Araripe (Noreste de Brasil). Ph.D Thesis, University of Barcelona, Barcelona, Spain, 1999. [Google Scholar]
- Oliveira, G.R.; Kellner, A.W. Rare hatchling specimens of Araripemys Price, 1973 (Testudines, Pelomedusoides, Araripemydidae) from the Crato Formation, Araripe Basin. J. South. Am. Earth Sci. 2017, 79, 137–142. [Google Scholar] [CrossRef]
- Filho, E.B.D.S.; Adami-Rodrigues, K.; De Lima, F.J.; Bantim, R.A.M.; Wappler, T.; Saraiva, A. Álamo, F. Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil. Hist. Biol. 2017, 31, 926–937. [Google Scholar] [CrossRef]
- Osés, G.L.; Petri, S.; Voltani, C.G.; Prado, G.; Galante, D.; Rizzutto, M.A.; Rudnitzki, I.D.; Da Silva, E.P.; Rodrigues, F.; Rangel, E.; et al. Deciphering pyritization-kerogenization gradient for fish soft-tissue preservation. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catto, B.; Jahnert, R.J.; Warren, L.V.; Varejao, F.G.; Assine, M.L. The microbial nature of laminated limestones: Lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment. Geol. 2016, 341, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Warren, L.V.; Varejão, F.G.; Quaglio, F.; Simoes, M.; Fürsich, F.T.; Poiré, D.G.; Catto, B.; Assine, M. Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies 2016, 63, 3. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.R., Jr.; da Silva Filho, W.F.; Freire, J.G., Jr.; dos Santos, F.H. Syngenetic and diagenetic features of evaporite-lutite successions of the Ipubi Formation, Araripe Basin, Santana do Cariri, NE Brazil. J. S. Am. Earth Sci. 2016, 72, 315–327. [Google Scholar] [CrossRef]
- Martill, D.M. Preservation of Fish in the Cretaceous Santana Formation of Brazil. Palaeontology 1988, 31, 1–18. [Google Scholar]
- Fara, E.; Saraiva, A.Á.F.; Campos, D.D.A.; Moreira, J.K.; Siebra, D.D.C.; Kellner, A.W. Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): Stratigraphic, palaeoenvironmental and palaeoecological implications. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 218, 145–160. [Google Scholar] [CrossRef]
- Kellner, A.W.A.; Campos, D.A. Brief review of dinosaur studies and perspectives in Brazil. Anais Acad. Brasil. Ciênc. 2000, 72, 509–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, P.S.R.; Oliveira, G.R.; Azevedo, S.A.K.; Kellner, A.W.A.; Campos, D.D.A. New Information about Pelomedusoides (Testudines: Pleurodira) from the Cretaceous of Brazil. In Morphology and Evolution of Turtles; Springer: Berlin, Germany, 2013; pp. 261–275. [Google Scholar]
- Custódio, M.A.; Quaglio, F.; Warren, L.V.; Simões, M.G.; Fürsich, F.T.; Perinotto, J.A.J.; Assine, M. The transgressive-regressive cycle of the Romualdo Formation (Araripe Basin): Sedimentary archive of the Early Cretaceous marine ingression in the interior of Northeast Brazil. Sediment. Geol. 2017, 359, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chagas, D.B.; Assine, M.L.; Freitas, F.I. Fácies Sedimentares e ambientes deposicionais da Formação Barbalha no Vale do Cariri, Bacia do Araripe, Nordeste do Brasil. Geociências 2007, 26, 313–322. [Google Scholar]
- Chagas, D.B. Análise Faciológica Frente ao Controle Paleoambiental Baseado na Palinologia do Intervalo Aptiano/Albiano da Bacia do Araripe (Sub-Bacias Cariri e Feira Nova), NE do Brasil. Ph.D. Thesis, Federal University of Ceará, Fortaleza, CE, Brazil, 2017. [Google Scholar]
- Reis, D.E.S.; Caputo, M.V. Potencial industrial e energético do folhelho pirobetuminoso Formação Codó, Bacia do Parnaíba. In Proceedings of the 4° PDPETRO, Campinas, SP, Brazil, 21–24 October 2007; pp. 1–10. [Google Scholar]
- Peters, K.E.; Cassa, M.R.; Magoon, L.B.; Dow, W.G. Applied Source Rock Geochemistry. In The Petroleum System—From Source to Trap; American Association of Petroleum Geologists AAPG/Datapages: Tulsa, OK, USA, 1994; Volume 60, pp. 93–120. [Google Scholar]
- Espitalié, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Fr. Pétrole 1977, 32, 23–42. [Google Scholar] [CrossRef]
- Bordenave, M.L.; Espitalié, J.; Leplat, P.; Oudin, J.L.; Vandenbroucke, M. Screening Techniques for Source Rock Evaluation. In Applied Petroleum Geochemistry; Bordenave, M.L., Ed.; Editions Technip: Paris, France, 1993; ISBN 978-271-080-629-5. [Google Scholar]
- Espitalie, J.; DeRoo, G.; Marquis, F. La pyrolyse Rock-Eval et ses applications. Deuxième partie. Rev. Inst. Fr. Pétrole 1985, 40, 755–784. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer Science & Business Media: Berlin, Germany, 1984; Part II, Chapter 1; ISBN 364-287-813-X. [Google Scholar]
- Berner, R.A.; Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory. Geochim. Cosmochim. Acta 1983, 47, 855–862. [Google Scholar] [CrossRef]
- Leventhal, J.S. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochim. Cosmochim. Acta 1995, 59, 1207–1211. [Google Scholar] [CrossRef]
- Raiswell, R. Chemical Models of Solute Acquisition in Glacial Melt Waters. J. Glaciol. 1984, 30, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Woolfe, K.J.; Dale, P.J.; Brunskill, G.J. Sedimentary C/S relationships in a large tropical estuary: Evidence for refractory carbon inputs from mangroves. Geo Mar. Lett. 1995, 15, 140–144. [Google Scholar] [CrossRef]
- Arthur, M.A.; Brumsack, H.-J.; Jenkyns, H.; Schlanger, S.O. Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences. Cret. Res. Events Rhythm. 1990, 75–119. [Google Scholar] [CrossRef]
- Koutsoukos, E.A.M.; Mello, M.R.; Filho, N.C.D.A. Micropalaeontological and geochemical evidence of mid-Cretaceous dysoxic-anoxic palaeoenvironments in the Sergipe Basin, northeastern Brazil. Geol. Soc. Lond. Spec. Publ. 1991, 58, 427–447. [Google Scholar] [CrossRef]
- Begon, M.; Towsend, C.R.; Harper, J.L. Ecologia: De Indivíduos a Populações, 4th ed.; Artmed: Porto Alegre, RS, Brazil, 2007; ISBN 978-853-630-884-5. [Google Scholar]
- Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons, 1st ed.; Springer Science & Business Media: Berlin, Germany, 2006; p. 1036. ISBN 978-3-540-32344-0. [Google Scholar]
- Katz, B.J. Factors Controlling the Development of Lacustrine Petroleum Source Rocks—An Update. In Paleogeography, Paleoclimate, and Source Rocks; American Association of Petroleum Geologists AAPG/Datapages: Tulsa, OK, USA, 1995; ISBN 978-162-981-087-4. [Google Scholar]
- Wefer, G.; Berger, W.H.; Bijma, J.; Fischer, G. Clues to Ocean. History: A Brief. Overview of Proxies; Springer Science and Business Media LLC: Berlin, Germany, 1999; pp. 1–68. [Google Scholar]
- Price, L.I. A presença de Pterosauria no Cretáceo Inferior da Chapada do Araripe, Brasil. Anais Acad. Bras. Ciênc. 1971, 43, 451–461. [Google Scholar]
- Martill, D.M. The significance of the Santana Biota. In Proceedings of the Atas do I Simposio sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, CE, Brazil, 14–16 June 1990; pp. 253–264. [Google Scholar]
- Bruno, A.D.S.; Hessel, M.H. Registros paleontológicos do Cretáceo marinho na Bacia do Araripe. Estudos Geol. 2006, 16, 30–49. [Google Scholar]
- Farina, M. Seqüência plumbífera do Araripe-mineralização sulfetada no Cretáceo sedimentar brasileiro. In Proceedings of the Congresso Brasileiro de Geologia, Porto Alegre, RS, Brazil, 24–26 October 1974; pp. 61–77. [Google Scholar]
- Rios-Netto, A.D.M.; Regali, M.D.S.P.; Carvalho, I.D.S.; De Freitas, F.I. Palinoestratigrafia do intervalo Alagoas da Bacia do Araripe, Nordeste do Brasil. Rev. Bras. Geociênc. 2012, 42, 331–342. [Google Scholar] [CrossRef]
- Lima, M.R. Considerações sobre a subdivisão estratigráfica da Formação Santana—Cretáceo do Nordeste do Brasil. Rev. Bras. Geociênc. 1979, 9, 116–121. [Google Scholar]
- Arai, M.; Coimbra, J.C. Análise paleoecológica do registro das primeiras ingressões marinhas na Formação Santana (Cretáceo Inferior da Chapada do Araripe). In Proceedings of the Simpósio sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, CE, Brazil; 1990; pp. 225–239. [Google Scholar]
- Assine, M.L. Análise estratigráfica da bacia do araripe, nordeste do Brasil. Rev. Bras. Geociênc. 1992, 22, 289–300. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; The University of New Mexico: Albuquerque, NM, USA, 2017; p. 344. [Google Scholar]
- Faure, G. Principles of Isotope Geology; John Wiley & Sons: Hoboken, NJ, USA, 1977; p. 464. ISBN 978-047-125-665-6. [Google Scholar]
- Kaplan, I.R.; Rittenberg, S.C. Microbiological Fractionation of Sulphur Isotopes. J. Gen. Microbiol. 1964, 34, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Bottrell, S.H.; Newton, R.J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci. Rev. 2006, 75, 59–83. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Lepland, A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures. J. Mar. Syst. 2000, 25, 299–312. [Google Scholar] [CrossRef]
- Fry, B.; Jannasch, H.W.; Molyneaux, S.J.; Wirsen, C.O.; Muramoto, J.A.; King, S. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, S1003–S1019. [Google Scholar] [CrossRef]
- Neretin, L.N.; Böttcher, M.E.; Grinenko, V.A. Sulfur isotope geochemistry of the Black Sea water column. Chem. Geol. 2003, 200, 59–69. [Google Scholar] [CrossRef]
- Barros, S.D.S.; Horn, B.L.D.; Santos, R.B.; Rocha, D.E.G.A. Geoquímica isotopic na reconstrução paleoambiental da Formação Ipubi (Porção superior do Grupo Santana Pós-rifte I) Bacia do Araripe Noroeste do Estado de Pernambuco. In Proceedings of the Anais Congresso Brasileiro de Geologia—48, Porto Alegre, RS, Brazil, 24–28 October 2016; p. 1034. [Google Scholar]
- Berner, R.A. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. Am. J. Sci. 1982, 282, 451–473. [Google Scholar] [CrossRef]
- Berner, R.A. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 1984, 48, 605–615. [Google Scholar] [CrossRef]
- Fleurance, S.; Cuney, M.; Malartre, F.; Reyx, J. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr. Palaeoclim. Palaeoecol. 2013, 369, 201–219. [Google Scholar] [CrossRef]
- Coimbra, J.C.; Arai, M.; Carreño, A.L. Biostratigraphy of Lower Cretaceous microfossils from the Araripe basin, northeastern Brazil. Geobios 2002, 35, 687–698. [Google Scholar] [CrossRef]
- Neumann, V.; Borrego, A.; Cabrera, L.; Dino, R. Organic matter composition and distribution through the Aptian–Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. Int. J. Coal Geol. 2003, 54, 21–40. [Google Scholar] [CrossRef]
- Tomé, M.E.; Filho, M.F.L.; Neumann, V.H. Taxonomic studies of non-marine ostracods in the Lower Cretaceous (Aptian–lower Albian) of post-rift sequence from Jatobá and Araripe basins (Northeast Brazil): Stratigraphic implications. Cretac. Res. 2014, 48, 153–176. [Google Scholar] [CrossRef]
- Varejão, F.G.; Silva, V.R.; Assine, M.L.; Warren, L.V.; Matos, S.A.; Rodrigues, M.G.; Fürsich, F.T.; Simões, M.G. Marine or freshwater? Accessing the paleoenvironmental parameters of the Caldas Bed, a key marker bed in the Crato Formation (Araripe Basin, NE Brazil). Braz. J. Geol. 2021, 51. [Google Scholar] [CrossRef]
- Heimhofer, U.; Hochuli, P.-A. Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Rev. Palaeobot. Palynol. 2010, 161, 105–126. [Google Scholar] [CrossRef]
- Varejão, F.G.; Warren, L.V.; Simões, M.G.; Buatois, L.A.; Mángano, M.G.; Rumbelsperger, A.M.B.; Assine, M.L. Mixed siliciclastic–carbonate sedimentation in an evolving epicontinental sea: Aptian record of marginal marine settings in the interior basins of north-eastern Brazil. Sedimentology 2021. [Google Scholar] [CrossRef]
- Garcia, G.G.; Garcia, A.J.V.; Henriques, M.H.P. Palynology of the Morro do Chaves Formation (Lower Cretaceous), Sergipe Alagoas Basin, NE Brazil: Paleoenvironmental implications for the early history of the South Atlantic. Cretac. Res. 2018, 90, 7–20. [Google Scholar] [CrossRef]
- Lúcio, T.; Neto, J.A.S.; Selby, D. Late Barremian/Early Aptian Re–Os age of the Ipubi Formation black shales: Stratigraphic and paleoenvironmental implications for Araripe Basin, northeastern Brazil. J. S. Am. Earth Sci. 2020, 102, 102699. [Google Scholar] [CrossRef]
- Coimbra, J.C.; Freire, T.M. Age of the Post-rift Sequence I from the Araripe Basin, Lower Cretaceous, NE Brazil: Implications for spatio-temporal correlation. Rev. Bras. Paleontol. 2021, 24, 37–46. [Google Scholar] [CrossRef]
- Martill, D.M.; Brito, P.M.; Donovan, S.K. There are rudists in Brazil! Derived examples of cf. Amphitriscoelus Harris and Hodson, 1922, in the Araripe Basin, north-east Brazil: Implications for dating of the fossil Lagerstätten of the Santana and Crato formations. Cretac. Res. 2021, 120, 104718. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
Formation (Shale/Evaporite) | Sample | TS (%) | TOC (%) | HI (mg HC/g TOC) | OI (mg CO2/g TOC) | δ 34S V-CDT (‰) |
---|---|---|---|---|---|---|
Romualdo (S) | DR-BA-19 | 1.25 | 5.65 | 272.74 | 14.34 | −10.06 |
Romualdo (S) | DR-BA-20 | 0.97 | 3.92 | 678.06 | 30.61 | −9.83 |
Romualdo (S) | DR-BA-06 | 0.01 | 0.11 | - | - | - |
Romualdo (S) | DR-BA-05 | 0.17 | 1.03 | 151.46 | 39.81 | −9.6 |
Romualdo (S) | DR-BA-04 | 0.77 | 0.01 | - | - | −12.85 |
Ipubi (E) | DR-BA-03 | - | - | - | - | +16.90 |
Ipubi (E) | DR-BA-02 | - | - | - | - | +16.94 |
Ipubi (E) | DR-BA-01 | - | - | - | - | +16.51 |
Ipubi (E) | DR-BA-07 | - | - | - | - | +16.95 |
Ipubi (S) | DR-BA-10 | 1.07 | 0.73 | - | - | −15.45 |
Ipubi (S) | DR-BA-09 | 0.52 | 1.04 | 146.15 | 28.85 | −10.92 |
Ipubi (S) | DR-BA-08 | 0.55 | 0.09 | - | - | −13.03 |
Ipubi (S) | DR-BA-13 | 0.01 | 0.03 | - | - | - |
Ipubi (E) | DR-BA-18 | - | - | - | - | +17.71 |
Ipubi (E) | DR-BA-12 | - | - | - | - | +17.11 |
Ipubi (S) | DR-BA-11 | 1.8 | 10.2 | 740.59 | 14.80 | −16.18 |
Ipubi (S) | DR-BA-17 | 3.41 | 23.3 | 736.91 | 17.77 | −16.36 |
Crato (S) | DR-BA-21 | 0.01 | 0.69 | - | - | - |
Crato (S) | DR-BA-22 | 0.01 | 0.72 | - | - | - |
Crato (S) | DR-BA-23 | 0.01 | 0.34 | - | - | - |
Barbalha (S) | DR-BA-15 | 1.3 | 13.7 | 648.69 | 32.48 | −13.35 |
Barbalha (S) | DR-BA-16 | 0.11 | 0.71 | - | - | −5.27 |
Barbalha (S) | DR-BA-14 | 0.04 | 0.64 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontes, N.V.; das Chagas, D.B.; de Souza, A.C.B.; do Nascimento Junior, D.R.; da Silva Filho, W.F.; Capilla, R.; Garcia, A.J.V.; de Araújo Nogueira Neto, J. Organic and Isotopic Geochemistry of Evaporites and Shales of the Santana Group (Araripe Basin, Brazil): Clues on the Evolution of Depositional Systems and Global Correlation during the Lower Cretaceous. Minerals 2021, 11, 795. https://doi.org/10.3390/min11080795
Pontes NV, das Chagas DB, de Souza ACB, do Nascimento Junior DR, da Silva Filho WF, Capilla R, Garcia AJV, de Araújo Nogueira Neto J. Organic and Isotopic Geochemistry of Evaporites and Shales of the Santana Group (Araripe Basin, Brazil): Clues on the Evolution of Depositional Systems and Global Correlation during the Lower Cretaceous. Minerals. 2021; 11(8):795. https://doi.org/10.3390/min11080795
Chicago/Turabian StylePontes, Naedja Vasconcelos, Daniel Bezerra das Chagas, Ana Clara Braga de Souza, Daniel Rodrigues do Nascimento Junior, Wellington Ferreira da Silva Filho, Ramsés Capilla, Antônio Jorge Vasconcellos Garcia, and José de Araújo Nogueira Neto. 2021. "Organic and Isotopic Geochemistry of Evaporites and Shales of the Santana Group (Araripe Basin, Brazil): Clues on the Evolution of Depositional Systems and Global Correlation during the Lower Cretaceous" Minerals 11, no. 8: 795. https://doi.org/10.3390/min11080795
APA StylePontes, N. V., das Chagas, D. B., de Souza, A. C. B., do Nascimento Junior, D. R., da Silva Filho, W. F., Capilla, R., Garcia, A. J. V., & de Araújo Nogueira Neto, J. (2021). Organic and Isotopic Geochemistry of Evaporites and Shales of the Santana Group (Araripe Basin, Brazil): Clues on the Evolution of Depositional Systems and Global Correlation during the Lower Cretaceous. Minerals, 11(8), 795. https://doi.org/10.3390/min11080795