Contrasted Effect of Spinel and Pyroxene on Molecular Hydrogen (H2) Production during Serpentinization of Olivine
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Experimental Products
Olivine brucite silica serpentine
3.2. Influence of Spinel and Pyroxene Minerals on Molecular Hydrogen (H2) Production
3.3. Temperature Dependence of the Influence of Spinel and Pyroxene Minerals
3.4. Comparison of H2 Production in This Study with That from Previous Studies
3.5. Geological Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, R.L. The abundance of ultramafic rocks in Atlantic Ocean crust. Geophys. J. Int. 2001, 144, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.L.; Miller, D.J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys. Res. Lett. 2003, 30, 1250. [Google Scholar] [CrossRef]
- Hirth, G.; Guillot, S. Rheology and tectonic significance of serpentinite. Elements 2013, 9, 107–113. [Google Scholar] [CrossRef]
- Charlou, J.L.; Fouquet, Y.; Bougault, H.; Donval, J.P.; Etoubleau, J.; Jean-Baptiste, P.; Dapoigny, A.; Appriou, P.; Rona, P.A. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1998, 62, 2323–2333. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Douville, E.; Jean-Baptiste, P.; Radford-Knoery, J.; Fouquet, Y.; Dapoigny, A.; Stievenard, M. Compared geochemical signatures and the evolution of Menez Gwen (37°50′ N) and Lucky Strike (37°17′ N) hydrothermal fluids, south of the Azores triple junction on the Mid-Atlantic Ridge. Chem. Geol. 2000, 171, 49–75. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Jean-Baptiste, P.; Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR). Chem. Geol. 2002, 191, 345–359. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef]
- Brazelton, W.J.; Schrenk, M.O.; Kelley, D.S.; Baross, J.A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl. Environ. Microbiol. 2006, 72, 6257–6270. [Google Scholar] [CrossRef] [Green Version]
- Brazelton, W.J.; Nelson, B.; Schrenk, M.O. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2010, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- McCollom, T.M.; Seewald, J.S. Serpentinites, hydrogen, and life. Elements 2013, 9, 129–134. [Google Scholar] [CrossRef]
- Schrenk, M.O.; Kelley, D.S.; Bolton, S.A.; Baross, J.A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 2004, 6, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, M.O.; Brazelton, W.J.; Lang, S.Q. Serpentinization, carbon, and deep life. Rev. Mineral. Geochem. 2013, 75, 575–606. [Google Scholar] [CrossRef] [Green Version]
- Takai, K.; Nakamura, K.; Suzuki, K.; Inagaki, F.; Nealson, K.H.; Kumagai, H. Ultramafics-hydrothermalism-hydrogenesis-hyperSLiME (UltraH3) linkage: A key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol. Res. 2006, 10, 269–282. [Google Scholar] [CrossRef]
- Yoshizaki, M.; Shibuya, T.; Suzuki, K.; Shimizu, K.; Nakamura, K.; Takai, K.; Omori, S.; Maruyama, S. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: A preliminary result from on-going experiment. Geochem. J. 2009, 43, e17–e22. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef]
- Shibuya, T.; Komiya, T.; Nakamura, K.; Takai, K.; Maruyama, S. Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrain. Res. 2010, 182, 230–238. [Google Scholar] [CrossRef]
- Shibuya, T.; Yoshizaki, M.; Sato, M.; Shimizu, K.; Nakamura, K.; Omori, S.; Suzuki, K.; Takai, K.; Tsunakawa, H.; Maruyama, S. Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Prog. Earth Planet. Sci. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Song, S.G.; Su, L.; Niu, Y.L.; Lai, Y.; Zhang, L.F. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim. Cosmochim. Acta 2009, 73, 1737–1754. [Google Scholar] [CrossRef]
- Berndt, M.E.; Allen, D.E.; Seyfried, W.E., Jr. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 1996, 24, 351–354. [Google Scholar] [CrossRef]
- McCollom, T.M.; Seewald, J.S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 2001, 65, 3769–3778. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E., Jr. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars. Geochim. Cosmochim. Acta 2003, 67, 1531–1542. [Google Scholar] [CrossRef]
- Seyfried, W.E., Jr.; Foustoukos, D.I.; Fu, Q. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim. Cosmochim. Acta 2007, 71, 3872–3886. [Google Scholar] [CrossRef]
- McCollom, T.M.; Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 2009, 73, 856–875. [Google Scholar] [CrossRef]
- Marcaillou, C.; Muñoz, M.; Vidal, O.; Parra, T.; Harfouche, M. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet. Sci. Lett. 2011, 303, 281–290. [Google Scholar] [CrossRef]
- Mayhew, L.E.; Ellison, E.T.; McCollom, T.M.; Trainor, T.P.; Templeton, A.S. Hydrogen generation from low-temperature water-rock interactions. Nat. Geosci. 2013, 6. [Google Scholar] [CrossRef]
- Huang, R.F.; Sun, W.D.; Ding, X.; Liu, J.Z.; Peng, S.B. Olivine versus peridotite during serpentinization: Gas formation. Sci. China Earth Sci. 2015, 58, 2165–2174. [Google Scholar] [CrossRef]
- Huang, R.F.; Sun, W.D.; Ding, X.; Liu, J.Q.; Zhan, W.H. Formation of hydrogen gas and alkane during peridotite serpentinization. Acta Petrol. Sin. 2015, 31, 1901–1907. [Google Scholar]
- Huang, R.F.; Sun, W.D.; Liu, J.Z.; Ding, X.; Peng, S.B.; Zhan, W.H. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures. Sci. Rep. 2016, 6, 33821. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.F.; Sun, W.D.; Song, M.S.; Ding, X. Influence of pH on molecular hydrogen (H2) generation and reaction rates during serpentinization of peridotite and olivine. Minerals 2019, 9, 661. [Google Scholar] [CrossRef] [Green Version]
- McCollom, T.M.; Klein, F.; Robbins, M.; Moskowitz, B.; Berquó, T.S.; Jöns, N.; Bach, W.; Templeton, A. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 2016, 181, 175–200. [Google Scholar] [CrossRef] [Green Version]
- McCollom, T.M.; Klein, F.; Moskowitz, B.; Berquó, T.S.; Bach, W.; Templeton, A.S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture. Geochim. Cosmochim. Acta 2020, 282, 55–75. [Google Scholar] [CrossRef]
- Lamadrid, H.M.; Rimstidt, J.D.; Schwarzenbach, E.M.; Klein, F.; Ulrich, S.; Dolocan, A.; Bodnar, R.J. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 2017, 8, 16107. [Google Scholar] [CrossRef]
- Jones, L.C.; Rosenbauer, R.; Goldmith, J.I.; Oze, C. Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys. Res. Lett. 2010, 37, L14306. [Google Scholar] [CrossRef] [Green Version]
- Syverson, D.D.; Tutolo, B.M.; Borrok, D.M.; Seyfried, W.E., Jr. Serpentinization of olivine at 300 °C and 500 bars: An experimental study examining the role of silica on the reaction path and oxidation state of iron. Chem. Geol. 2017, 475, 122–134. [Google Scholar] [CrossRef]
- Huang, R.F.; Song, M.S.; Ding, X.; Zhu, S.Y.; Zhan, W.H.; Sun, W.D. Influence of pyroxene and spinel on the kinetics of peridotite serpentinization. J. Geophys. Res. 2017, 122. [Google Scholar] [CrossRef]
- Huang, R.F.; Sun, W.D.; Ding, X.; Zhao, Y.S.; Song, M.S. Effect of pressure on the kinetics of peridotite serpentinization. Phys. Chem. Miner. 2020, 47, 33. [Google Scholar] [CrossRef]
- Chen, D.G.; Li, B.X.; Zhi, X.C. Genetic geochemistry of mantle-derived peridotite xenolith from Panshishan, Jiangsu. Geochimica 1994, 23, 13–24. [Google Scholar]
- Sun, W.D.; Peng, Z.C.; Zhi, X.C.; Chen, D.G.; Wang, Z.R.; Zhou, X.H. Osmium isotope determination on mantle-derived peridotite xenoliths from Panshishan with N-TIMS. Chinese Sci. Bull. 1998, 43, 573–575. [Google Scholar] [CrossRef]
- Xu, X.S.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.J.; Geng, H.Y.; Zheng, J.P. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos 2008, 102, 43–64. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Geng, A.S.; Wang, Y.P.; Liu, D.H.; Jia, R.F.; Shen, J.G. Kinetic simulating experiment on the secondary hydrocarbon generation of kerogen. Sci. China Ser. D-Earth Sci. 2001, 45, 13–20. [Google Scholar] [CrossRef]
- Pan, C.C.; Yu, L.P.; Liu, J.Z.; Fu, J.M. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation. Earth Planet. Sci. Lett. 2006, 246, 70–89. [Google Scholar] [CrossRef]
- Lafay, R.; Montes-Hernandez, G.; Janots, E.; Chiriac, R.; Findling, N.; Toche, F. Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. J. Cryst. Growth 2012, 347, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Lafay, R.; Montes-Hernandez, G.; Janots, E.; Chiriac, R.; Findling, N.; Toche, F. Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity. Chem. Geol. 2014, 368, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.W.; Liu, X.X.; Hu, Y.H. Investigation of the thermal decomposition of talc. Clay Clay Miner. 2014, 62, 137–144. [Google Scholar] [CrossRef]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the sequence of serpentinization reactions: Petrology, mineral chemistry, and petrophysics of serpentinites from MAR 15 °N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33, L13306. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.S.; Frost, B.R.; Fryer, P.; McCaig, A.; Searle, R.; Ildefonse, B.; Zinin, P.; Sharma, S.K. Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J. Petrol. 2009, 50, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.F.; Lin, Q.T.; Sun, W.D.; Ding, X.; Zhan, W.H.; Zhu, J.H. The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geosci. Front. 2017, 8, 1311–1321. [Google Scholar] [CrossRef]
- Jöns, N.; Kahl, W.A.; Bach, W. Reaction-induced porosity and onset of low-temperature carbonation in abyssal peridotites: Insights from 3D high-resolution microtomography. Lithos 2017, 268–271, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Tingle, T.N.; Hochella, M.F., Jr.; Becker, C.H.; Malhotra, R. Organic compounds on crack surfaces in olivine from San Carlos, Arizona, and Hualalai Volcano, Hawaii. Geochim. Cosmochim. Acta 1990, 54, 477–485. [Google Scholar] [CrossRef]
- Beeson, M.H.; Jackson, E.D. Chemical composition of altered chromites from the Stillwater Complex, Montana. Am. Mineral. 1969, 54, 1084–1100. [Google Scholar]
- Hamlyn, P.R. Chromite alteration in the Panton Sill, East Kimberley Region, Western Australia. Mineral. Mag. 1975, 40, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, D.J.M. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petr. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Andreani, M.; Daniel, I.; Pollet-Villard, M. Aluminum speeds up the hydrothermal alteration of olivine. Am. Mineral. 2013, 98, 1738–1744. [Google Scholar] [CrossRef]
- Pens, M.; Andreani, M.; Daniel, I.; Perrillat, J.P.; Cardon, H. Contrasted effect of aluminum on the serpentinization rate of olivine and orthopyroxene under hydrothermal conditions. Chem. Geol. 2016, 441, 256–264. [Google Scholar] [CrossRef]
- Bonifacie, M.; Busigny, V.; Mével, C.; Philippot, P.; Agrinier, P.; Jendrzejewski, N.; Scambelluri, M.; Javoy, M. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim. Cosmochim. Acta 2008, 72, 126–139. [Google Scholar] [CrossRef]
- Dungan, M.A. A microprobe study of antigorite and some serpentine pseudomorphs. Can. Mineral. 1979, 17, 771–784. [Google Scholar]
- Seyfried, W.E., Jr.; Pester, N.J.; Ding, K.; Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 2011, 75, 1574–1593. [Google Scholar] [CrossRef]
- Béarat, H.; Mckelvy, M.J.; Chizmeshya, A.V.G.; Gormley, D.; Nunez, R.; Carpenter, R.W.; Squires, K.; Wolf, G.H. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environ. Sci. Technol. 2006, 40, 4802–4808. [Google Scholar] [CrossRef]
- Oze, C.; Jones, L.C.; Goldsmith, J.I.; Rosenbauer, R.J. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces. Proc. Natl. Acad. Sci. USA 2012, 109, 9750–9754. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.; Fyfe, W.S. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem. Geol. 1970, 6, 185–202. [Google Scholar] [CrossRef]
- Wegner, W.W.; Ernst, W.G. Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O. Am. J. Sci. 1983, 283, 151–180. [Google Scholar]
- Lazar, C.; McCollom, T.M.; Manning, C.E. Abiogenic methanogenesis during experimental komatiite serpentinization: Implications for the evolution of the early Precambrian atmosphere. Chem. Geol. 2012, 326–327, 102–112. [Google Scholar] [CrossRef]
- Okamoto, A.; Ogasawara, Y.; Ogawa, Y.; Tsuchiya, N. Progress of hydration reactions in olivine-H2O and orthopyroxenite-H2O systems at 250 °C and vapor-saturated pressure. Chem. Geol. 2011, 289, 245–255. [Google Scholar] [CrossRef]
- Ueda, H.; Shibuya, T.; Sawaki, Y.; Saitoh, M.; Takai, K.; Maruyama, S. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: Implications for hydrogen generation in the Hadean seafloor hydrothermal system. Prog. Earth Planet. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Manning, C.E. Solubility of corundum + kyanite in H2O at 700 °C and 10 kbar: Evidence for Al-Si complexing at high pressure and temperature. Geofluids 2007, 7, 258–269. [Google Scholar] [CrossRef]
- Beard, J.; Hopkinson, L. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. J. Geophys. Res. 2000, 105, 16527–16539. [Google Scholar] [CrossRef]
- Hébert, R.; Adamson, A.C.; Komor, S.C. Metamorphic petrology of ODP Leg 109, Hole 670A serpentinized peridotites: Serpentinization processes at a slow spreading ridge environment. In Proceedings of the Ocean Drilling Program, Scientific Results106/109, Ocean Drilling Program, College Station, TX, USA; 1990; pp. 103–115. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Fowler, C.M.R. Some liked it hot. Nature 1996, 382, 404–405. [Google Scholar] [CrossRef]
- Sleep, N.H. The Hadean-Archaean environment. Cold Spring Harb. Perspect. Biol. 2010, 2, a002527. [Google Scholar] [CrossRef] [Green Version]
- Holm, N.G.; Andersson, E.M. Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal systems: A perspective. Planet. Space Sci. 1995, 43, 153–159. [Google Scholar] [CrossRef]
- Sleep, N.H.; Meibom, A.; Fridriksson, T.; Coleman, R.G.; Bird, D.K. H2-rich fluids from serpentinization: Geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 2004, 101, 12818–12823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahnle, K.; Arndt, N.; Cockell, C.; Halliday, A.; Nisbet, E.; Selsis, F.; Sleep, N.H. Emergence of a habitable planet. Space Sci. Rev. 2007, 129, 35–78. [Google Scholar] [CrossRef]
Run no. | T (°C) | P (kbar) | Olivine (mg) | Solution (mg) | Spinel, Al2O3, Cr2O3 (mg) | W/R Ratios | Time (Days) | H2 (mmol/kg) | Reaction Extent (%) c |
---|---|---|---|---|---|---|---|---|---|
Olivine Only | |||||||||
HR-16 | 311 | 3.0 | 50.7 | 50.9 | ― | 1.0 | 13 | 100 | 69 (1.3) |
HR-76 | 311 | 3.0 | 49.2 | 51.2 | ― | 0.96 | 27 | 80 | 76 (1.7) |
HR-106 | 311 | 3.0 | 49.3 | 50.2 | ― | 1.0 | 10 | 95 | 62 (0.5) |
Fe-57 a | 400 | 3.5 | 35.9 | 46.7 | ― | 1.3 | 19 | 0.83 | 0.5 (0.5) |
Fe-46 a | 535 | 3.6 | 65.7 | 101.7 | ― | 1.5 | 18 | 2.2 | 0.0 (0.0) |
Olivine + Al2O3 | |||||||||
HR-92 | 311 | 3.0 | 39.4 | 37.5 | 6.5 | 0.82 | 29 | 203 | 90 (0.7) |
HR-94 | 311 | 3.0 | 50.0 | 50.9 | 12.7 | 0.95 | 27 | 132 | — |
HR-108 | 311 | 3.0 | 51.3 | 51.1 | 6.5 | 0.88 | 19 | 233 | 54 (3.8) |
HR-72 | 505 | 3.0 | 36.2 | 37.9 | 11.8 | 0.79 | 20 | 3.7 | 0.5 (0.2) |
Olivine + Cr2O3 | |||||||||
HR-95 | 311 | 3.0 | 49.4 | 50.9 | 6.3 | 0.91 | 27 | 166 | 77 (3.2) |
HR-99 | 311 | 3.0 | 51.7 | 57.8 | 13.2 | 0.90 | 27 | 271 | 84 (2.8) |
HR-109 | 311 | 3.0 | 52.0 | 50.4 | 6.7 | 0.86 | 18 | 268 | 54 (3.8) |
Olivine + Spinel | |||||||||
HR-84 | 200 | 3.1 | 32.7 | 28.7 | 7.1 | 0.72 | 13 | 1.5 | 0.4 (0.5) |
HR-93 | 311 | 3.0 | 49.3 | 47.5 | 1.9 | 0.93 | 28 | 259 | 99 (0.9) |
HR-75 | 311 | 3.0 | 49.7 | 51.4 | 6.6 | 0.92 | 27 | 260 | 100 (1.0) |
HR-110 | 311 | 3.0 | 52.0 | 51.6 | 6.3 | 0.88 | 15 | 130 | 64 (0.6) |
HR-73 | 505 | 3.0 | 36.4 | 36.7 | 12.8 | 0.75 | 20 | 5.7 | 0.5 (0.6) |
Olivine + Pyroxene | |||||||||
HR-88 | 311 | 3.0 | 30.7 | 27.8 | ― | 0.90 | 27 | 15 | 100 (1.0) |
HR-68 | 405 | 3.0 | 51.4 | 36.5 | ― | 0.71 | 20 | 2.3 | 53 (3.5) |
HR-70 | 505 | 3.0 | 20.1 | 19.6 | ― | 0.97 | 19 | 6.3 | 5 (0.1) |
HR-83 b | 505 | 3.0 | 50.3 | 51.5 | ― | 1.0 | 36 | 1.7 | 5 (0.3) |
Spinel-Bearing Peridotite | |||||||||
HR86 | 311 | 3.0 | 59.2 | 51.1 | ― | 0.86 | 27 | 119 | 99 (1.7) |
HR-69 | 405 | 3.0 | 54.2 | 41.2 | ― | 0.76 | 20 | 16 | 99 (2.2) |
HR-71 | 505 | 3.0 | 20.1 | 19.5 | ― | 0.97 | 20 | 14 | 6 (0.1) |
T (°C) | P (bar) | Solid Reactant | Starting Fluids | W/R Ratios | Time (Days) | H2 (mmol/kg) | References |
---|---|---|---|---|---|---|---|
300 | 500 | Ol | NaCl | 2.25 | 69 | 158 | [19] |
200 | 500 | Prt | seawater | 1.1 | 328 | 77 | [22] |
200 | 300 | Ol | seawater + NaHCO3 | 2.5 | 33 | 2 | [33] |
300 | 300 | Prt | H2O | 0.67 | 70 | 76 | [24] |
200 | 200 | Ol + Chr a | H2O | 2.5 | 21 | 4 | [61] |
200 | 200 | Ol | H2O | 2.5 | 21 | 4 | [61] |
300 | 350 | Koma | H2O | 3.7 | 63 | 74 | [64] |
300 | 350 | Koma + Chr | H2O | 4.7 | 63 | 55 | [64] |
300 | 500 | Ol | NaCl | 2.1 | 111 | 11 | [30] |
200 | 500 | Ol | NaCl | 1.8 | 138 | 0.09 | [30] |
400 | 500 | Ol | NaCl + MgCl2 | 4.0 | 64 | 1.2 | [21] |
400 | 500 | Prt b | NaCl + MgCl2 | 4.0 | 60 | 6.8 | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Ding, X.; Sun, W.; Shang, X. Contrasted Effect of Spinel and Pyroxene on Molecular Hydrogen (H2) Production during Serpentinization of Olivine. Minerals 2021, 11, 794. https://doi.org/10.3390/min11080794
Huang R, Ding X, Sun W, Shang X. Contrasted Effect of Spinel and Pyroxene on Molecular Hydrogen (H2) Production during Serpentinization of Olivine. Minerals. 2021; 11(8):794. https://doi.org/10.3390/min11080794
Chicago/Turabian StyleHuang, Ruifang, Xing Ding, Weidong Sun, and Xiuqi Shang. 2021. "Contrasted Effect of Spinel and Pyroxene on Molecular Hydrogen (H2) Production during Serpentinization of Olivine" Minerals 11, no. 8: 794. https://doi.org/10.3390/min11080794
APA StyleHuang, R., Ding, X., Sun, W., & Shang, X. (2021). Contrasted Effect of Spinel and Pyroxene on Molecular Hydrogen (H2) Production during Serpentinization of Olivine. Minerals, 11(8), 794. https://doi.org/10.3390/min11080794