Study on Phase Transfer Catalyst Used in the Synthesis of Sodium Isobutyl Xanthate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Instruments
2.1.3. Synthesis Mechanism
2.2. Methods
2.2.1. Synthesis Method
2.2.2. Experiment Method
2.2.3. Content Analysis of Sodium Isobutyl Xanthate
2.2.4. Content Analysis of Free Alkali
2.2.5. Multi-Target Weight Analysis
3. Results and Discussion
3.1. The Influence of the Type of Phase Transfer Catalyst on the Synthesis Process
3.2. The Influence of the Dosage of Phase Transfer Catalyst on the Synthesis Process
3.3. Orthogonal Test
3.4. The Influence of the Time on the Synthesis Process
3.5. Repetitive Experiment
3.6. Product Characterization Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, B.; Wu, J.; Dong, Z.L.; Jiang, T.; Li, Q.; Yang, Y.B. Flotation performance, structure–activity relationship and adsorption mechanism of a newly-synthesized collector for copper sulfide minerals in Gacun polymetallic ore. Appl. Surf. Sci. 2021, 551, 149420. [Google Scholar] [CrossRef]
- Peng, Y.J.; Grano, S.; Fornasiero, D.; Ralston, J. Control of grinding conditions in the flotation of galena and its separation from pyrite. Int. J. Miner. Process. 2003, 70, 67–82. [Google Scholar] [CrossRef]
- Zeng, L.M.; Ming, O.L. Flotation process and process mineralogy analysis of certain zinc sulfide ore. Chin. J. Nonferrous Met. 2018, 28, 1866–1875. [Google Scholar]
- Lin, Q.Q.; Gu, G.H.; Wang, H.; Wang, C.Q.; Liu, Y.C.; Fu, J.G.; Zhu, R.F. An effective approach for improving flotation recovery of molybdenite fines from a finely-disseminated molybdenum ore. J. Cent. South Univ. 2018, 25, 1326–1339. [Google Scholar] [CrossRef]
- Gutierrez, L.; Uribe, L.; Hernandez, V.; Vidal, V.; Mendonça, R.T. Assessment of the use of lignosulfonates to separate chalcopyrite and molybdenite by flotation. Powder Technol. 2020, 359, 216–225. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.W.; Chen, J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates. Miner. Eng. 2007, 20, 722–728. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Chang. 2016, 39, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Golmakani, M.H.; Khaki, J.V.; Babakhani, A. A novel method for direct fabrication of ferromolybdenum using molybdenite via self-propagation high temperature synthesis. Mater. Chem. Phys. 2017, 194, 9–16. [Google Scholar]
- Salazar, J.S.; Pablo, R.; Parada, B. Stibnite froth flotation: A critical review. Miner. Eng. 2021, 163, 160713. [Google Scholar]
- Chimonyo, W.; Fletcher, B.; Peng, Y.J. The effect of oxidized starches on chalcopyrite flotation. Miner. Eng. 2021, 165, 106749. [Google Scholar] [CrossRef]
- Li, S.L.; Gao, L.H.; Wang, J.C.; Zhou, H.P.; Liao, Y.F.; Xing, Y.W.; Gui, X.H.; Cao, Y.J. Polyethylene oxide assisted separation of molybdenite from quartz by flotation. Miner. Eng. 2021, 162, 106765. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, S.M.; Feng, Q.C.; Liu, Y.B. Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector. Miner. Eng. 2021, 163, 106809. [Google Scholar] [CrossRef]
- Shen, Y.; Nagaraj, D.R.; Farinato, R.; Somasundaran, P.; Tong, S.G. Xanthate decomposition in ore pulp under flotation conditions: Method development and effects of minerals on decomposition. Miner. Eng. 2019, 131, 198–205. [Google Scholar] [CrossRef]
- Maree, W.; Kloppers, L.; Hangone, G.; Oyekola, O. The effects of mixtures of potassium amyl xanthate (PAX) and isopropyl ethyl thionocarbamate (IPETC) collectors on grade and recovery in the froth flotation of a nickel sulfide ore. S. Afr. J. Chem. Eng. 2017, 24, 116–121. [Google Scholar] [CrossRef]
- Fosu, S.; Skinner, W.; Zanin, M. Detachment of coarse composite sphalerite particles from bubbles in flotation: Influence of xanthate collector type and concentration. Miner. Eng. 2015, 71, 73–84. [Google Scholar] [CrossRef]
- Ma, X.; Zhong, H.; Wang, S.; Hu, Y.; Xiao, J.J. Synthesis of sodium iso-butyl xanthate by solvent method. J. Jiangxi Univ. Sci. Technol. 2012, 33, 1–5. [Google Scholar]
- Ma, X. Research on the green synthesis technology of alkyl xanthate collectors. Master’s Thesis, Central South University, Changsha, China, 2013. [Google Scholar]
- Lotter, N.O.; Bradshaw, D.J. The formulation and use of mixed collectors in sulphide flotation. Miner. Eng. 2010, 23, 945–951. [Google Scholar] [CrossRef]
- Lee, K.; Archibald, D.; Mclean, J.; Reuter, M.A. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Miner. Eng. 2009, 22, 395–401. [Google Scholar] [CrossRef]
- Ma, X.; Wang, S.; Zhong, H. Effective production of sodium isobutyl xanthate using carbon disulfide as a solvent: Reaction kinetics, calorimetry and scale-up. J. Clean. Prod. 2018, 200, 444–453. [Google Scholar] [CrossRef]
- Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Miner. Eng. 2019, 138, 246–256. [Google Scholar] [CrossRef]
- Huang, X.P.; Huang, K.H.; Jia, Y.; Wang, S.; Cao, Z.F.; Zhong, H. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chem. Eng. Sci. 2019, 205, 220–229. [Google Scholar] [CrossRef]
- Pålsson, B.I.; Eric, K.S. Computer-assisted calculations of thermodynamic equilibria in sphalerite-xanthate systems. Int. J. Miner. Process. 1989, 26, 223–258. [Google Scholar] [CrossRef]
- Dhar, P.; Thornhill, M.; Kota, H.R. Comparison of single and mixed reagent systems for flotation of copper sulphides from Nussir ore. Miner. Eng. 2019, 142, 105930. [Google Scholar] [CrossRef]
- Cui, W.Y.; Chen, J.H.; Li, Y.Q.; Chen, Y.; Zhao, C.H. Interactions of xanthate molecule with different mineral surfaces: A comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry. Miner. Eng. 2020, 159, 106565. [Google Scholar]
- Han, S.; Nguyen, A.V.; Kim, K.; Park, J.K.; You, K. Measurements and analysis of xanthate chain length effect on bubble attachment to galena surfaces. Miner. Eng. 2020, 159, 106651. [Google Scholar] [CrossRef]
- Dehmlow, E.V. Phase-transfer catalyzed two-phase reactions in preparative organic chemistry. Angew. Chem. Int. Edit. 1974, 13, 170–179. [Google Scholar] [CrossRef]
- Herriott, A.W.; Picker, D. Phase transfer catalysis. Evaluation of catalysis. J. Am. Chem. Soc. 1975, 97, 2345–2349. [Google Scholar] [CrossRef]
- Fiamegos, Y.C.; Stalikas, C.D. Phase-transfer catalysis in analytical chemistry. Anal. Chim. Acta 2005, 550, 1–12. [Google Scholar] [CrossRef]
- Brändström, A. Principles of phase-transfer catalysis by quaternary ammonium salts. Adv. Phys. Org. Chem. 1977, 15, 267–330. [Google Scholar]
- Leung, L.M.; Chan, W.H.; Leung, S.K.; Fung, S.M. Synthesis of aliphatic and aromatic poly (s-dithiocarbonates) using a phase-transfer catalyst. J. Macromol. Sci. Pure Appl. Chem. 1994, 31, 495–505. [Google Scholar] [CrossRef]
- Wu, Y.N.; Feng, W.G.; Wu, Q.W.; Sun, S.Q. Study om phase transfer catalyst used in the synthesis of isoamyl xanthate. Energy Chem. Ind. 2019, 40, 29–32. [Google Scholar]
- Wei, X.L.; Xu, B.J.; Zhao, Q. Optimization design of the stability for the plunger assembly of oil pumps based on multi-target orthogonal test design. J. Hebei Univ. Eng. 2010, 27, 95–99. [Google Scholar]
- Zhao, T.T.; He, C.H.; Tan, M.E.; Sun, Z.H. Optimization in ethanol extraction process of Qianlieshuang Granules based on multi-index weight analysis and single factor-orthogonal experiments. Chem. Bioeng. 2020, 37, 45–50. [Google Scholar]
Level | Solvent Volume | Material Ratio | Reaction Temperature/°C | Rotating Speed/rpm |
---|---|---|---|---|
1 | 3.0 Valcohol | 1:1:1.05 | 25 | 120 |
2 | 3.5 Valcohol | 1:1:1.10 | 30 | 180 |
3 | 4.0 Valcohol | 1:1:1.10 | 35 | 240 |
First Layer | Investigation Index | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Second layer | Factor A | Factor B | Factor C | Factor D | ||||||||
Third layer | A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 |
No. | Solvent Volume | Material Ratio | Reaction Temperature/°C | Rotating Speed/rpm | Xanthate Content/% | Xanthate Yield/% | Free Alkali Content/% |
---|---|---|---|---|---|---|---|
1 | 3.0 Valcohol | 1:1:1.05 | 25 | 120 | 73.39 | 72.69 | 4.15 |
2 | 3.0 Valcohol | 1:1:1.10 | 30 | 180 | 76.86 | 81.39 | 0.28 |
3 | 3.0 Valcohol | 1:1:1.15 | 35 | 240 | 76.71 | 81.54 | 0.27 |
4 | 3.5 Valcohol | 1:1:1.05 | 30 | 240 | 78.32 | 80.14 | 0.56 |
5 | 3.5 Valcohol | 1:1:1.10 | 35 | 120 | 76.70 | 78.14 | 0.07 |
6 | 3.5 Valcohol | 1:1:1.15 | 25 | 180 | 76.63 | 73.75 | 2.73 |
7 | 4.0 Valcohol | 1:1:1.05 | 35 | 180 | 75.99 | 78.38 | 0.09 |
8 | 4.0 Valcohol | 1:1:1.10 | 25 | 240 | 74.61 | 71.76 | 4.00 |
9 | 4.0 Valcohol | 1:1:1.15 | 30 | 120 | 74.61 | 76.20 | 1.79 |
K1 | 226.96 | 227.70 | 224.63 | 224.70 | The content of sodium isobutyl xanthate Visual analysis | ||
K2 | 231.65 | 228.17 | 229.79 | 229.48 | |||
K3 | 225.21 | 227.95 | 229.40 | 229.64 | |||
Range | 6.44 | 0.47 | 5.16 | 4.94 | |||
Level | A2 | B2 | C2 | D3 | |||
K1 | 235.62 | 231.21 | 218.20 | 227.03 | The yield of sodium isobutyl xanthate Visual analysis | ||
K2 | 232.03 | 231.29 | 237.73 | 233.52 | |||
K3 | 226.34 | 231.49 | 238.06 | 233.44 | |||
Range | 9.28 | 0.28 | 19.86 | 6.49 | |||
Level | A1 | B3 | C3 | D2 | |||
K1 | 4.70 | 4.80 | 10.88 | 6.01 | The content of free alkali Visual analysis | ||
K2 | 3.36 | 4.35 | 2.63 | 3.10 | |||
K3 | 5.88 | 4.79 | 0.43 | 4.83 | |||
Range | 2.52 | 0.45 | 10.45 | 2.91 | |||
Level | A2 | B2 | C3 | D2 |
No. | Xanthate Content/% | Xanthate Yield/% | Free Alkali Content/% |
---|---|---|---|
1 | 82.44 | 86.21 | 0.15 |
2 | 82.47 | 86.08 | 0.16 |
3 | 82.56 | 86.66 | 0.14 |
4 | 82.65 | 86.32 | 0.14 |
Average | 82.53 | 86.32 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Cheng, L.; Weng, X.; Gao, Y.; Huang, J. Study on Phase Transfer Catalyst Used in the Synthesis of Sodium Isobutyl Xanthate. Minerals 2021, 11, 850. https://doi.org/10.3390/min11080850
Ma Z, Cheng L, Weng X, Gao Y, Huang J. Study on Phase Transfer Catalyst Used in the Synthesis of Sodium Isobutyl Xanthate. Minerals. 2021; 11(8):850. https://doi.org/10.3390/min11080850
Chicago/Turabian StyleMa, Zhijun, Liang Cheng, Xingyuan Weng, Ye Gao, and Jiuxing Huang. 2021. "Study on Phase Transfer Catalyst Used in the Synthesis of Sodium Isobutyl Xanthate" Minerals 11, no. 8: 850. https://doi.org/10.3390/min11080850
APA StyleMa, Z., Cheng, L., Weng, X., Gao, Y., & Huang, J. (2021). Study on Phase Transfer Catalyst Used in the Synthesis of Sodium Isobutyl Xanthate. Minerals, 11(8), 850. https://doi.org/10.3390/min11080850