Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin
Abstract
:1. Introduction
2. Geological Setting
3. Agate Occurrence
- (1)
- Suisari Island. In the north-eastern part of the Suisari Island (Keltnavolok cape) (Figure 1B), the ZF plagio-phyric pillow lava flows with a thickness of 25 m are exposed. The pillows are slightly deformed and have chill zones up to 1 cm, fine-grained marginal zones, and a coarse-grained core, and their diameter ranges from 0.5 to 4–5 m. The central and upper parts of the pillows contain gas cavities filled by chalcedony and calcite, sometimes with carbonaceous material. The agates have a black colour. Along with black agates, light-coloured quartz-carbonate-chlorite varieties of agates are widely distributed in the outcrops [9,13]. The inter-pillow matrix is composed of chloritized lava breccia and tuff material. There are numerous cavities in the inter-pillow matrix filled by chalcedony, calcite, and carbonaceous material that form agates with a size up to 70 cm.
- (2)
- Glubokii Navolok cape. The coastal outcrops of Kondopoga bay from Suisari village to Glubokii Navolok (Figure 1B) are formed by the volcano-sedimentary succession that belongs to the lower part of the SF and upper part of the ZF. In this area, the LSH section comprises massive and pillow picrobasalts (SF), plagioclase-pyroxene, and pyroxene-phyric basalts interbedded with lava breccias, agglomerate, and pyroclastic tuffs (ZF). The thickness of lava flows ranges from 5 to 16 m. The agate mineralisation is mainly associated with pillow lava flows and pyroclastic tuffs matrix (ZF, Figure 2A–C). The rounded, elongated pillow-shave chill zones range up to 1 cm and have well-developed sagging tails. The diameter of pillows varies from 0.5 to 3 m. Agates fill cavities in the inter-pillow space, fissures, and gas vesicles in pillow lavas, and are also observed in pyroclastic tuffs. The size of agates ranges from 3 to 25 cm. They are composed of quartz-carbonate material with organic carbon impurities.
- (3)
- Solomennoe. The coastal outcrops near Solomennoe village (Figure 1B) are represented by massive and pillow lavas of plagioclase-phyric basalts (upper parts of ZF). Some pillows have flow banding—pahoehoe. Massive and pillow lavas are often interbedded with lenses of basaltic carbon-rich tuffs and tuffites [15] (Figure 2D,E) that are 20–40 cm in thickness and up to 12 m along the strike. The interbeds are black in colour and often bordered by pillows by thin films. A series of thin picrobasaltic dykes cut the lava flows and overlay sedimentary succession. The hydrothermal alteration is widespread in the pillow lavas at the boundary with dykes, and large carbonate nests (up to 1 m in size) are noted. The agates in this area are rare and were identified exclusively in the cores of large pillows and are represented by light-coloured varieties.
4. Methods
5. Results
5.1. Macro- and Micro-Scopic Characteristics
5.2. Mineral Composition
5.3. Chemical Characterisation
5.4. Characteristics of Carbonaceous Matter
6. Discussion
6.1. Agate Varieties in the Onega Basin
6.2. Origin of CM in Agates
- CM might be incorporated from the inter-pillow matrix considering that initially the inter-pillow matrix might be composed of sedimentary organic matter.
- CM might be supplied by hydrothermal fluids enriched in CM due to contamination from the host rocks.
6.3. Petrological Implications
7. Conclusions
- (1)
- The present study provided the first detailed investigation of black agates occurring in volcanic rocks of the ZF within the Onega Basin (Karelian Craton, Fennoscandian Shield).
- (2)
- The silica matrix of black agates is only composed by chalcedony, quartz, and quartzine. In addition to silica minerals, calcite, chlorite, feldspar, sulphides, and CM are also identified.
- (3)
- Black colouration of agates is produced by disseminated carbonaceous matter within the silica matrix with a bulk content of less than 1 wt.%.
- (4)
- Three main texture types of black agates were identified: monocentric concentrically zoning, polycentric spherulitic, and moss agates.
- (5)
- The source of CM in moss and spherulitic agates is associated with the hydrothermal fluids enriched in mechanically derived carbonaceous matter incorporated from underlaying shungite rocks. CM from the concentrically zoning agates originate both from the inter-pillow matrix and hydrothermal fluid (i.e., via chemical reactions involving CO2 and/or CH4).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moxon, T.; Palyanova, G. Agate Genesis: A Continuing Enigma. Minerals 2020, 10, 953. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Pan, Y. Mineralogy, geochemistry and genesis of agate—A review. Minerals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Godovikov, A.A.; Ripinen, O.I.; Motorin, S.G. Agates; Nedra: Moscow, Russia, 1987; p. 368. (In Russian) [Google Scholar]
- Barsanov, G.P.; Yakovleva, V.E. Mineralogy of Gemstones and Semi-Precious Varieties of Fine-Grained Chalcedony; Nauka: Moscow, Russia, 1984; 144p. (In Russian) [Google Scholar]
- Götze, J.; Tichomirowa, M.; Fuchs, H.; Pilot, J.; Sharp, Z.D. Chemistry of agates: A trace element and stable isotope study. Chem. Geol. 2001, 175, 523–541. [Google Scholar] [CrossRef]
- Natkaniec-Nowak, L.; Dumańska-Słowik, M.; Pršek, J.; Lankosz, M.; Wróbel, P.; Gaweł, A.; Kowalczyk, J.; Kocemba, J. Agates from Kerrouchen (The Atlas Mountains, Morocco): Textural Types and Their Gemmological Characteristics. Minerals 2016, 6, 77. [Google Scholar] [CrossRef]
- Pršek, J.; Dumańska-Słowik, M.; Powolny, T.; Natkaniec-Nowak, L.; Toboła, T.; Zych, D.; Skrepnicka, D. Agates from Western Atlas (Morocco)—Constraints from mineralogical and microtextural characteristics. Minerals 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Polekhovsky, Y.S.; Punin, Y.O. Agate mineralization in basaltoids of the northeastern Ladoga region, South Karelia. Geol. Ore Depos. 2008, 50, 642–646. [Google Scholar] [CrossRef]
- Svetova, E.; Svetov, S. Mineralogy and Geochemistry of Agates from Paleoproterozoic Volcanic Rocks of the Karelian Craton, Southeast Fennoscandia (Russia). Minerals 2020, 10, 1106. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kempe, U.; Libowitzky, E.; Rericha, A.; Vennemann, T. The origin of black colouration in onyx agate from Mali. Miner. Mag. 2012, 76, 115–127. [Google Scholar] [CrossRef]
- Dumańska-Slowik, M.; Natkaniec-Nowak, L.; Kotarba, M.J.; Sikorska, M.; Rzymełka, J.A.; Łoboda, A.; Gaweł, A. Mineralogical and geochemical characterization of the “bituminous” agates from Nowy Kościol (Lower Silesia). J. Mineral. Geochem. 2008, 184, 255–268. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Medvedev, P.V.; Svetov, S.A. The Onega basin. In Reading the Archive of Earth’s Oxygenation; Melezhik, V.A., Prave, A.R., Fallick, A.E., Kump, L.R., Strauss, H., Lepland, A., Hanski, E.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–490. [Google Scholar]
- Svetova, E.N.; Svetov, S.A. Agates from Paleoproterozoic volcanic rocks of the Onega Structure, Central Karelia. Geol. Ore Depos. 2020, 62, 669–681. [Google Scholar] [CrossRef]
- Timofeev, V.M. To the genesis of Zaonega shungite. Proc. Soc. St. Petersburg Nat. 1924, 39, 99–122. (In Russian) [Google Scholar]
- Puchtel, I.S.; Arndt, N.T.; Hofmann, A.W.; Haase, K.M.; Kröner, A.; Kulikov, V.S.; Kulikova, V.V.; Garbe-Schönberg, C.D.; Nemchin, A.A. Petrology of mafic lavas within the Onega plateau, central Karelia: Evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield. Contrib. Mineral. Petrol. 1998, 130, 134–153. [Google Scholar] [CrossRef]
- Slabunov, A.I.; Lobach-Zhuchenko, S.B.; Bibikova, E.V.; Sorjonen-Ward, P.; Balagansky, V.V.; Volodichev, O.I.; Shchipansky, A.A.; Svetov, S.A.; Chekulaev, V.P.; Arestova, N.A.; et al. The Archaean nucleus of the Fennoscandian (Baltic) Shield. In European Lithosphere Dynamics; Gee, D.G., Stephenson, R.A., Eds.; Memoirs, No. 32; Geological Society: London, UK, 2006; pp. 627–644. [Google Scholar]
- Arestova, N.A.; Chekulaev, V.P.; Lobach-Zhuchenko, S.B.; Kucherovskii, G.A. Formation of the Archean crust of the ancient Vodlozero domain (Baltic shield). Stratigr. Geol. Correl. 2015, 23, 119–130. [Google Scholar] [CrossRef]
- Kulikov, V.S.; Svetov, S.A.; Slabunov, A.I.; Kulikova, V.V.; Polin, A.K.; Golubev, A.I.; Gorkovets, V.Y.; Ivashchenko, V.I.; Gogolev, M.A. Geological map of Southeastern Fennoscandia (scale 1:750,000): A new approach to map compilation. Trans. KarRC RAS 2017, 2, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Stepanova, A.V.; Samsonov, A.V.; Salnikova, E.B.; Puchtel, I.S.; Larionova, Y.O.; Larionov, A.N.; Stepanov, V.S.; Shapovalov, Y.B.; Egorova, S.V. Palaeoproterozoic Continental MORB-type Tholeiites in the Karelian Craton: Petrology, Geochronology, and Tectonic Setting. J. Petrol. 2014, 55, 1719–1751. [Google Scholar] [CrossRef]
- Kulikov, V.S.; Kulikova, V.V.; Lavrov, B.S.; Pisarevskii, S.A.; Pukhtel, I.S.; Sokolov, S.Y. The Paleoroterozoic Suisarian Picrite–Basalt Complex in Karelia: Key Section and Petrology; KNTs RAN: Petrozavodsk, Russia, 1999; 96p. (In Russian) [Google Scholar]
- Kulikov, V.S.; Rychanchik, D.V.; Golubev, A.I.; Filippov, M.M.; Tarkhanov, G.V.; Frik, M.G.; Svetov, S.A.; Kulikova, V.V.; Sokolov, S.Y.; Romashkin, A.E. Stratigraphy and magmatism. Ludicovian. In Paleoproterozoic Onega Structure: Geology, Tectonics, Structure, and Metallogeny; Glushanin, L.V., Sharov, N.V., Shchiptsov, V.V., Eds.; Karelian Research Centre, RAS: Petrozavodsk, Russia, 2011; pp. 67–101. (In Russian) [Google Scholar]
- Galdobina, L.P. The Ludicovian Superhorizon. In Geology of Karelia; Sokolov, V.A., Ed.; Nauka: Leningrad, Russia, 1987; pp. 59–67. (In Russian) [Google Scholar]
- Buseck, P.R.; Galdobina, L.P.; Kovalevski, V.V.; Rozkova, N.N.; Valley, J.W.; Zaidenberg, A.Z. Shungites: The C-rich rocks of Karelia, Russia. Can. Mineral. 1997, 35, 1363–1378. [Google Scholar]
- Melezhik, V.A.; Fallick, A.E.; Filippov, M.M.; Larsen, O. Karelian shungite—An indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: Geology, lithology and geochemistry. Earth Sci. Rev. 1999, 47, 1–40. [Google Scholar] [CrossRef]
- Melezhik, V.A.; Fallick, A.E.; Filippov, M.M.; Lepland, A.; Rychanchik, D.V.; Deines, Y.E.; Medvedev, P.V.; Romashkin, A.E.; Strauss, H. Petroleum surface oil seeps from a Paleoproterozoic petrified giant oilfield. Terra Nova 2009, 21, 119–126. [Google Scholar] [CrossRef]
- Kump, L.R.; Junium, C.; Arthur, M.A.; Brasier, A.; Fallick, A.; Melezhik, V.; Lepland, A.; Črne, A.E.; Luo, G.M. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 2011, 334, 1694–1696. [Google Scholar] [CrossRef]
- Kovalevskii, S.V.; Moshnikov, I.A.; Kovalevski, V.V. Heat-treated nano-structured shungite rocks and electrophysical properties associated. Nanosyst. Phys. Chem. Math. 2018, 9, 468–472. [Google Scholar] [CrossRef]
- Filippov, M.M. Shungite Rocks of the Onega Structure; KarNTs RAN: Petrozavodsk, Russia, 2002; 282p. (In Russian) [Google Scholar]
- Inostrantsev, A.A. New end member of amorphous carbon. Gorn. J. 1897, 2, 314–342. (In Russian) [Google Scholar]
- Stepanova, A.V.; Samsonov, A.V.; Larionov, A.N. The final episode of the middle proterozoic magmatism in the Onega structure: Data on Trans-Onega dolerites. Trans. KarRC RAS 2014, 1, 3–16. [Google Scholar]
- Martin, A.P.; Prave, A.R.; Condon, D.J.; Lepland, A.; Fallick, A.E.; Romashkin, A.E.; Medvedev, P.V.; Rychanchik, D.V. Multiple Palaeoproterozoic carbon burial episodes and excursions. Earth Planet. Sci. Lett. 2015, 424, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Gudin, A.N.; Dubinina, E.O.; Nosova, A.A. Petrogenesis of Variolitic Lavas of the Onega Structure, Central Karelia. Petrology 2012, 20, 255–270. [Google Scholar] [CrossRef]
- Svetov, S.A.; Chazhengina, S.J. Geological Phenomenon of Yalguba RidgeVariolite from F. Yu. Levinson-Lessing’s Time until Today: Mineralogical and Geochemical Aspects. Geol. Ore Depos. 2018, 60, 547–558. [Google Scholar] [CrossRef]
- Svetov, S.A.; Chazhengina, S.Y.; Stepanova, A.V. Geochemistry and texture of clinopyroxene phenocrysts from Paleoproterozoic picrobasalts, Onega Basin, Fennoscandian Shield: Records of magma mixing processes. Minerals 2020, 10, 434. [Google Scholar] [CrossRef]
- Leonov, M.G.; Kulikov, V.S.; Zykov, D.S.; Kolodyazhny, S.Y.; Poleshchuk, A.V. Tectonics. In Paleoproterozoic Onega Structure: Geology, Tectonics, Structure, and Metallogeny; Glushanin, L.V., Sharov, N.V., Shchiptsov, V.V., Eds.; Karelian Research Centre, RAS: Petrozavodsk, Russia, 2011; pp. 127–170. (In Russian) [Google Scholar]
- Spiridonov, E.M.; Putintzeva, E.V.; Lavrov, O.B.; Ladygin, V.M. Kronstedtite, pumpelliite, prehnite and lennilenapeite in the metaagates and metabasalts of the early Proterozoic trap formation in the northern Onega region. In Proceedings of the Conference Lomonosov Readings, Moscow, Russia, 17–27 April 2017; Moscow State University: Moscow, Russia, 2017. Available online: https://conf.msu.ru/file/event/4305/eid4305_attach_b0acc3e7de2cd859225469534617a6272d70ce50.pdf (accessed on 9 July 2021). (In Russian).
- Filipov, M.M.; Deynes, Y.E. Subtabular Type of Shungite Deposits of Karelia; KarSC RAS: Petrozavodsk, Russia, 2018; 261p. (In Russian) [Google Scholar]
- Glebovitskii, V.A.; Bushmin, S.A.; Belyatsky, B.V.; Bogomolov, E.S.; Borozdin, A.P.; Savva, E.V.; Lebedeva, Y.M. RB-SR age of metasomatism and ore formation in the low-temperature shear zones of the Fenno-Karelian Craton, Baltic Shield. Petrology 2014, 22, 184–204. [Google Scholar] [CrossRef]
- Bibikova, E.V.; Kirnozova, T.I.; Lazarev, Y.I.; Makarov, V.A.; Nikolaev, A.A. U–Pb isotopic age of the Karelian Vepsian. Trans. USSR Acad. Sci. 1990, 310, 189–191. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Wopenka, B.; Pasteris, J.D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. Am. Mineral. 1993, 78, 533–557. [Google Scholar]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Dippel, B.; Jander, H.; Heintzenberg, J. NIR FT Raman spectroscopic study of flame soot. J. Aerosol Sci. 1999, 30, 4707–4712. [Google Scholar] [CrossRef]
- Lahfid, A.; Beyssac, O.; Deville, E.; Negro, F.; Chopin, C.; Goffé, B. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Mizukami, T.; Mori, H.; Endo, S.; Aoya, M.; Hara, H.; Nakamura, D.; Wallis, S. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc. 2014, 23, 33–50. [Google Scholar] [CrossRef]
- Murata, J.; Norman, M.B. An index of crystallinity for quartz. Am. J. Sci. 1976, 276, 1120–1130. [Google Scholar] [CrossRef]
- Kuznetsov, S.K.; Svetova, E.N.; Shanina, S.N.; Filippov, V.N. Minor Elements in Quartz from Hydrothermal-Metamorphic Veins in the Nether Polar Ural Province. Geochemistry 2012, 50, 911–925. [Google Scholar] [CrossRef]
- Behera, D.; Nandi, B.K.; Bhattacharya, S. Chemical properties and combustion behavior of constituent relative density fraction of a thermal coal. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 654–664. [Google Scholar] [CrossRef]
- Wada, H.; Tomita, T.; Matsuura, K.; Iuchi, K.; Ito, M.; Morikiyo, T. Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contrib. Mineral. Petrol. 1994, 118, 217–228. [Google Scholar] [CrossRef]
- Kholodkevich, S.V.; Berezkin, V.I.; Davydov, V.Y. Specific structural features and thermal resistance of shungite carbon to graphitization. Phys. Solid State 1999, 41, 1291–1294. [Google Scholar] [CrossRef]
- Jehlicka, J.; Urban, O.; Pokorný, J. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim. Acta 2003, 59, 2341–2352. [Google Scholar] [CrossRef]
- van Zuilen, M.A.; Fliegel, D.; Wirth, R.; Lepland, A.; Qu, Y.; Schreiber, A.; Romashkin, A.E.; Philippot, P. Mineral-templated growth of natural graphite films. Geochim. Cosmochim. Acta 2012, 83, 252–262. [Google Scholar] [CrossRef]
- Moxon, T.; Carpenter, M.A. Crystallite growth kinetics in nanocrystalline quartz (agate and chalcedony). Miner. Mag. 2009, 73, 551–568. [Google Scholar] [CrossRef]
- Moxon, T.; Nelson, D.R.; Zhang, M. Agate recrystallization: Evidence from samples found in Archaean and Proterozoic host rocks, Western Australia. Austr. J. Earth Sci. 2006, 53, 235–248. [Google Scholar] [CrossRef]
- Moxon, T.; Reed, S.J.; Zhang, M. Metamorphic effects on agate found near the Shap granite, Cumbria, England: As demonstrated by petrography, X-ray diffraction and spectroscopic methods. Miner. Mag. 2007, 71, 461–476. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Kempe, U.; Kapitonov, I.; Vennemann, T. Origin and characteristics of agates in 1479 sedimentary rocks from the Dryhead area, Montana/USA. Min. Mag. 2009, 73, 673–690. [Google Scholar]
- Folk, R.L.; Pittman, J.S. Length-slow chalcedony; A new testament for vanished evaporates. J. Sediment. Petrol. 1971, 41, 1045–1058. [Google Scholar]
- Silaev, V.I.; Shanina, S.N.; Ivanovskii, V.S. Inclusions of oil gases in agate-type secretions: Implications for forecast of the oil- and gas-bearing potential of the Polar Urals. Dokl. Earth Sci. 2002, 383, 246–252. (In Russian) [Google Scholar]
- Powolny, T.; Dumańska-Słowik, M.; Sikorska-Jaworowska, M.; Wójcik-Baniaaet, M. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland)—Microtextural, mineralogical, and geochemical constraints. J. Ore Geol. Rev. 2019, 114, 103–130. [Google Scholar] [CrossRef]
- Sforna, C.; van Zuilen, M.A.; Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 2014, 124, 18–33. [Google Scholar] [CrossRef]
- Rantitsch, G.; Grogger, W.; Teichert, C.; Ebner, F.; Hofer, C.; Maurer, E.M.; Schaffer, B.; Toth, M. Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. Int. J. Earth Sci. Geol. Rundsch. 2004, 93, 959. [Google Scholar] [CrossRef]
- Rahl, J.M.; Anderson, K.M.; Brandon, M.T.; Fassoulas, C. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth Planet. Sci. Lett. 2005, 240, 339–354. [Google Scholar] [CrossRef]
- Aoya, M.; Kouketsu, Y.; Endo, S.; Shimizu, H.; Mizukami, T.; Nakamura, D.; Wallis, S. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. J. Metamorph. Geol. 2010, 28, 895–914. [Google Scholar] [CrossRef]
- Wiederkehr, M.; Bousquet, R.; Ziemann, M.; Berger, A.; Schmid, S. 3–D assessment of peak–metamorphic conditions by Raman spectroscopy of carbonaceous material: An example from the margin of the Lepontine dome (Swiss Central Alps). Int. J. Earth Sci. 2011, 100, 1029. [Google Scholar] [CrossRef] [Green Version]
- Buseck, P.R.; Beyssac, O. From Organic Matter to Graphite: Graphitization. Elements 2014, 10, 421–426. [Google Scholar] [CrossRef]
- Chazhengina, S.Y.; Kovakevski, V.V. Raman spectroscopy of weathered shungites. J. Raman Spectrosc. 2017, 48, 1590–1596. [Google Scholar] [CrossRef]
- Manning, C.E.; Shock, E.L.; Sverjensky, D.A. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev. Mineral. Geochem. 2013, 75, 109–148. [Google Scholar] [CrossRef]
- Kríbek, B.; Sykorová, I.; Machovic, V.; Knésl, I.; Laufek, F.; Zachariás, J. The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa. Precambrian Res. 2015, 270, 300–317. [Google Scholar] [CrossRef]
- Foustoukos, D.I. Metastable equilibrium in the C H O system: Graphite deposition in crustal fluids. Am. Mineral. 2012, 97, 1373–1380. [Google Scholar] [CrossRef]
- Hannah, J.L.; Stein, H.J.; Yang, G.; Zimmerman, A.; Melezhik, V.A.; Filippov, M.M.; Turgeon, S.C. Re—Os geochronology of a 2.05 Ga fossil oil field near Shunga, Karelia, NW Russia. In Proceedings of the Abstracts of the 33 International Geological Congress, Oslo, Norway, 5–14 August 2008. [Google Scholar]
- Lubnina, N.V.; Pisarevsky, S.A.; Söderlund, U.; Nilsson, M.; Sokolov, S.J.; Khramov, A.N.; Iosifidi, A.G.; Ernst, R.; Romanovskaya, M.A.; Pisakin, B.N. New palaeomagnetic and geochronological data from the Ropruchey sill (Karelia, Russia): Implications for late Paleoproterozoic palaeogeography. In Proceedings of the Supercontinent Symposium 2012−Programm and Abstracts, Espoo, Finland, 25–28 September 2012; University of Helsinki: Espoo, Finland, 2012; pp. 81–82. Available online: https://tupa.gtk.fi/julkaisu/erikoisjulkaisu/ej_084.pdf (accessed on 9 August 2021).
Sample | Reaction | Temperature Range, °C | Mass Loss, % |
---|---|---|---|
CZw | Quartz transition | 568.3 | - |
Carbonaceous matter combustion | 500–611 | 0.05 | |
CZb | Quartz transition | 568.9 | - |
Carbonaceous matter combustion | 474–669 | 0.69 | |
MS | Quartz transition | 569.2 | - |
Carbonaceous matter combustion | 534–652 | 0.36 | |
SP | Quartz transition | 568.9 | - |
Carbonaceous matter combustion | 580–672 | 0.18 | |
IPM | Sulphide decomposition | 460 | 0.63 |
Carbonaceous matter combustion | 527 | 1.87 | |
Calcite decomposition | 746 | 11.77 |
Agate Type | Occurrences (Formations) | Colour | Morphology | Silica Phases | Mineral Association | Raman Characteristics of Carbonaceous Matter (Average Value, Standard Deviation, Minimum and Maximum Values) | ||
---|---|---|---|---|---|---|---|---|
R1 | FWMH-D1, cm−1 | T, °C TT | ||||||
Black agates | ||||||||
Concentrically zoning (CZ) | Suisari Island (ZF) | Black and white | nodule | micro- and macrocrystalline quartz, length-fast chalcedony | calcite, carbonaceous matter, chlorite, hematite, sphalerite | 0.78 ± 0.06 (0.62–0.94) | 99 ± 7 (76–112) | 264 ± 16 (230–314) |
Spherulitic (SP) | Glubokii Navolok (ZF) | Black and white | nodule | microcrystalline quartz, zebraic chalcedony, quartzine | calcite, carbonaceous matter, chlorite, arsenopyrite, sphalerite | 1.13 ± 0.05 (1.00–1.30) | 70 ± 4 (62–81) | 328 ± 8 (345–304) |
Moss agate (MS) | Suisari (ZF) | Colourless with black segregations | veinlet | microcrystalline quartz | calcite, carbonaceous matter, pyrite | 0.93 ± 0.05 (0.89–1.04) | 67 ± 0.5 (66–69) | 333 ± 1 (329–336) |
Typical varieties of light-coloured agates [9] | ||||||||
Concentrically zoning | Pinguba (SF) | Brownish red | amygdule | micro- and macrocrystalline quartz, length-fast chalcedony | chlorite, epidote, calcite, hematite, goethite, pyrite | - | - | |
Concentrically zoning | Suisari Island (ZF) | Greenish | nodule | micro- and macrocrystalline quartz, length-fast chalcedony | chlorite, epidote, calcite, K-feldspar, titanite, hematite | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svetova, E.N.; Chazhengina, S.Y.; Stepanova, A.V.; Svetov, S.A. Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin. Minerals 2021, 11, 918. https://doi.org/10.3390/min11090918
Svetova EN, Chazhengina SY, Stepanova AV, Svetov SA. Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin. Minerals. 2021; 11(9):918. https://doi.org/10.3390/min11090918
Chicago/Turabian StyleSvetova, Evgeniya N., Svetlana Y. Chazhengina, Alexandra V. Stepanova, and Sergei A. Svetov. 2021. "Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin" Minerals 11, no. 9: 918. https://doi.org/10.3390/min11090918
APA StyleSvetova, E. N., Chazhengina, S. Y., Stepanova, A. V., & Svetov, S. A. (2021). Black Agates from Paleoproterozoic Pillow Lavas (Onega Basin, Karelian Craton, NW Russia): Mineralogy and Proposed Origin. Minerals, 11(9), 918. https://doi.org/10.3390/min11090918