Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of Ceramic Samples
2.3. Characterization of Raw Materials and Ceramics
3. Results and Discussion
3.1. Physico-Chemical Properties of Raw Materials
3.1.1. Chemical and Mineralogical Composition
3.1.2. Thermal Analysis
3.2. Final Properties of Ceramic Samples
3.2.1. Mineralogical Composition
3.2.2. Physico-Mechanical Properties
3.2.3. Microstructural Evolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mining Waste: A Potential Ceramic Resource—European Training Network for the Remediation and Reprocessing of Sulfidic Mining Waste Sites. Available online: https://etn-sultan.eu/2021/02/25/mining-waste-a-potential-ceramic-resource/ (accessed on 9 June 2021).
- Romero, M.; Padilla, I.; Contreras, M.; López-Delgado, A.; Kalinkin, M. Minerals Mullite-Based Ceramics from Mining Waste: A Review. Minerals 2021, 11, 332. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining waste and its sustainable management: Advances in worldwide research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Popovic, V.; Miljkovic, J.Ž.; Subic, J.; Jean-Vasile, A.; Adrian, N.; Nicolaescu, E. Sustainable land management in mining areas in Serbia and Romania. Sustainability 2015, 7, 11857–11877. [Google Scholar] [CrossRef] [Green Version]
- Perez-Santana, S.; Pomares Alfonso, M.; Villanueva Tagle, M.; Peña Icart, M.; Brunori, C.; Morabito, R. Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere 2007, 66, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex—32006L0021—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0021 (accessed on 9 June 2021).
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 10 June 2021).
- EUR-Lex—52019DC0640—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640 (accessed on 9 June 2021).
- Durucan, S.; Korre, A.; Munoz-Melendez, G. Mining life cycle modelling: A cradle-to-gate approach to environmental management in the minerals industry. J. Clean. Prod. 2006, 14, 1057–1070. [Google Scholar] [CrossRef]
- Laurence, D. Establishing a sustainable mining operation: An overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Rodrigues, R.; Santana, L.N.L.; Arajo, G.; Carlos, H. Recycling of Mine Wastes as Ceramic Raw Materials: An Alternative to Avoid Environmental Contamination; Srivastava, J., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0120-8. [Google Scholar]
- Loutou, M.; Taha, Y.; Benzaazoua, M.; Daafi, Y.; Hakkou, R. Valorization of clay by-product from moroccan phosphate mines for the production of fired bricks. J. Clean. Prod. 2019, 229, 169–179. [Google Scholar] [CrossRef]
- Contreras, M.; Gázquez, M.J.; Romero, M.; Bolívar, J.P. 5—Recycling of industrial wastes for value-added applications in clay-based ceramic products: A global review (2015–19). In New Materials in Civil Engineering; Samui, P., Kim, D., Iyer, N.R., Chaudhary, S., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 155–219. ISBN 978-0-12-818961-0. [Google Scholar]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Lampropoulou, P.; Koutsovitis, P.; Koukouzas, N.; Laskaris, N.; Pomonis, P.; Hatzipanagiotou, K. Removal of Cu (II) from industrial wastewater using mechanically activated serpentinite. Energies 2020, 13, 2228. [Google Scholar] [CrossRef]
- INVALOR—Research Infrastructure for Waste Valorization and Sustainable Management of Resources. Available online: https://www.invalor.org/ (accessed on 20 August 2021).
- Global Ceramics Market Size|Industry Analysis Report. 2019. Available online: https://www.grandviewresearch.com/industry-analysis/ceramics-market (accessed on 9 June 2021).
- Global Resources Outlook 2019: Natural Resources for the Future We Want; A Report of the International Resource Panel (IRP); United Nations Environment Programme (UNEP): Nairobi, Kenya, 2019.
- Eurostat. Waste Statistics—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 15 June 2021).
- Dondi, M.; Iglesias, C.; Dominguez, E.; Guarini, G.; Raimondo, M. The effect of kaolin properties on their behaviour in ceramic processing as illustrated by a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Appl. Clay Sci. 2008, 40, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Starý, J.; Jirásek, J.; Pticen, F.; Zahradník, J.; Sivek, M. Review of production, reserves, and processing of clays (including bentonite) in the Czech Republic. Appl. Clay Sci. 2021, 205, 106049. [Google Scholar] [CrossRef]
- Zaidan, S.A.; Abdull-Razzak, S.S. Effect of bentonite addition on some properties of porcelain. J. Eng. 2018, 25, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Christogerou, A.; Kavas, T.; Pontikes, Y.; Rathossi, C.; Angelopoulos, G.N. Evolution of microstructure, mineralogy and properties during firing of clay-based ceramics with borates. Ceram. Int. 2010, 36, 567–575. [Google Scholar] [CrossRef]
- Gutiérrez Bayona, A.; Obando Gamboa, C.J.; Moreno Moreno, C.J. Caracterización físico-mecánica del estéril de carbón, en busca de una alternativa ambiental para las obras de infraestructura civil. Investig. Innovación Ing. 2018, 6, 16–29. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; El Haloui, Y.; Benzaazoua, M.; Hakkou, R. Sustainable reuse of coal mine waste: Experimental and economic assessments for embankments and pavement layer applications in morocco. Minerals 2020, 10, 851. [Google Scholar] [CrossRef]
- Stolboushkin, A.Y.; Ivanov, A.I.; Fomina, O.A. Use of Coal-Mining and Processing Wastes in Production of Bricks and Fuel for Their Burning. Procedia Eng. 2016, 150, 1496–1502. [Google Scholar] [CrossRef] [Green Version]
- Žibret, G.; Lemiere, B.; Mendez, A.M.; Cormio, C.; Sinnett, D.; Cleall, P.; Szabo, K.; Carvalho, T. National mineral waste databases as an information source for assessing material recovery potential from mine waste, tailings and metallurgical waste. Minerals 2020, 10, 446. [Google Scholar] [CrossRef]
- Zurita Ares, M.C.; Pérez, M.R.; Quesada Carballo, L.; Fernández, J.M. Assessment of clays from Puertollano (Spain) for their use in fine ceramic by diffuse reflectance spectroscopy. Appl. Clay Sci. 2015, 108, 135–143. [Google Scholar] [CrossRef]
- Doutsos, T.; Pe-Piper, G.; Boronkay, K.; Koukouvelas, I. Kinematics of the central Hellenides. Tectonics 1993, 12, 936–953. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I. Fractal analysis of normal faults in northwestern Aegean area, Greece. J. Geodyn. 1998, 26, 197–216. [Google Scholar] [CrossRef]
- Koukouvelas, I. The Geology of Greece, 1st ed.; LIBERAL BOOKS: Athens, Greece, 2018; ISBN 9786185012403. (In Greek) [Google Scholar]
- Bender, W.; Händle, F. (Eds.) Brick and Tile Making. Procedures and Operating Practice in the Heavy Clay Industries; Bauverlag GmbH: Wiesbaden/Berlin, Germany, 1982; ISBN 3-7625-1485-2. [Google Scholar]
- ASTM C326-82(1997)e1. Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays; ASTM International: West Conshohocken, PA, USA, 1997. [Google Scholar]
- ASTM C373-88(2006). Standard Test Method for Water Absorption, Bulk Density, Ap-parent Porosity, and Apparent Specific Gravity of Fired Whiteware Products; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Christogerou, A.; Kavas, T.; Pontikes, Y.; Koyas, S.; Tabak, Y.; Angelopoulos, G.N. Use of boron wastes in the production of heavy clay ceramics. Ceram. Int. 2009, 35, 447–452. [Google Scholar] [CrossRef]
- Mackenzie, R.C.; Bishui, B.M. The Montmorillonite Differential Thermal Curve. ii Effect of Exchangeable Cations on the Dehydroxylation of Normal Montmorillonite. Clay Miner. Bull. 1958, 3, 276–286. [Google Scholar] [CrossRef]
- Smykatz-Kloss, W.; Heide, K.; Klinke, W. Chapter 11: Applications of thermal methods in the geosciences. In Handbook of Thermal Analysis and Calorimetry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 2, pp. 451–593. ISBN 9780444820860. [Google Scholar]
- Mackenzie, R.C. Simple Phyllosilicates Based on Gibbsite- and Brucite-like Sheets. Differ. Therm. Anal. 1971, 1, 775. [Google Scholar]
- Taylor, R.K.; Smith, T.J. The engineering geology of clay minerals: Swelling, shrinking and mudrock breakdown. Clay Miner. 1986, 21, 235–260. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | K2O | Na2O | TiO2 | L.O.I | |
---|---|---|---|---|---|---|---|---|---|
W | 48.29 | 13.61 | 12.72 | 5.30 | 3.11 | 2.49 | 0.59 | bdl | 13.64 |
W20 | 48.91 | 14.10 | 10.42 | 6.24 | 3.40 | 2.19 | 0.51 | 0.21 | 13.42 |
W50 | 49.82 | 14.84 | 7.01 | 7.64 | 3.84 | 1.73 | 0.36 | 0.51 | 13.15 |
W80 | 50.73 | 15.59 | 3.60 | 9.04 | 4.29 | 1.26 | 0.22 | 0.81 | 12.88 |
CSM | 51.34 | 16.09 | 1.32 | 9.98 | 4.58 | 0.95 | 0.13 | 1.03 | 12.70 |
LS (%) | AP (%) | WA (%) | BD (g/cm3) | 3PBS (MPa) | |
---|---|---|---|---|---|
W | 1.45 ± 0.06 | 31.65 ± 0.66 | 16.9 ± 0.4 | 1.87 ± 0.01 | 24.52 ± 1.71 |
W20 | 1.95 ± 0.11 | 30.11 ± 0.43 | 16.4 ± 0.3 | 1.84 ± 0.01 | 23.11 ± 2.16 |
W50 | 3.14 ± 0.06 | 27.34 ± 0.25 | 14.3 ± 0.2 | 1.91 ± 0.01 | 23.02 ± 3.23 |
W80 | 8.19 ± 0.06 | 15.75 ± 0.50 | 7.3 ± 0.3 | 2.16 ± 0.01 | 12.91 ± 2.83 |
CSM | 11.95 ± 0.15 | 11.60 ± 1.03 | 5.0 ± 0.5 | 2.34 ± 0.03 | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christogerou, A.; Lampropoulou, P.; Papoulis, D.; Angelopoulos, G.N. Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece). Minerals 2021, 11, 961. https://doi.org/10.3390/min11090961
Christogerou A, Lampropoulou P, Papoulis D, Angelopoulos GN. Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece). Minerals. 2021; 11(9):961. https://doi.org/10.3390/min11090961
Chicago/Turabian StyleChristogerou, Angeliki, Paraskevi Lampropoulou, Dimitrios Papoulis, and George N. Angelopoulos. 2021. "Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece)" Minerals 11, no. 9: 961. https://doi.org/10.3390/min11090961
APA StyleChristogerou, A., Lampropoulou, P., Papoulis, D., & Angelopoulos, G. N. (2021). Feasibility Study on the Potential Replacement of Primary Raw Materials in Traditional Ceramics by Clayey Overburden Sterile from the Prosilio Region (Western Macedonia, Greece). Minerals, 11(9), 961. https://doi.org/10.3390/min11090961