Zircon U–Pb–Hf Isotopic and Trace Element Analyses for Oceanic Mafic Crustal Rock of the Neoproterozoic–Early Paleozoic Oeyama Ophiolite Unit and Implication for Subduction Initiation of Proto-Japan Arc
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Sample
3.2. U–Pb Dating
3.3. Lu–Hf Isotopic Analysis
3.4. Zircon Trace Element Analysis
4. Results
5. Discussion
5.1. Igneous Age of Mafic Rocks in the Oeyama Ophiolite
5.2. Source Mantle of the Oeyama Ophiolite Unit
5.3. Comparison with Associated Jadeitite and Implication for Paleogeographic Reconstruction
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, R.G. What Is an Ophiolite? In Ophiolites; Springer: Berlin, Heidelberg, 1977; Volume 12, pp. 1–7. [Google Scholar]
- Furnes, H.; de Wit, M.; Dilek, Y. Four Billion Years of Ophiolites Reveal Secular Trends in Oceanic Crust Formation. Geosci. Front. 2014, 5, 571–603. [Google Scholar] [CrossRef] [Green Version]
- Whattam, S.A.; Stern, R.J. The ‘Subduction Initiation Rule’: A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation. Contrib. Mineral. Petrol. 2011, 162, 1031–1045. [Google Scholar] [CrossRef]
- Isozaki, Y.; Aoki, K.; Nakama, T.; Yanai, S. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Res. 2010, 18, 82–105. [Google Scholar] [CrossRef]
- Isozaki, Y. A Visage of Early Paleozoic Japan: Geotectonic and Paleobiogeographical Significance of Greater South China. Isl. Arc 2019, 28, e12296. [Google Scholar] [CrossRef]
- Wakita, K. Geology and Tectonics of Japanese Islands: A Review—The Key to Understanding the Geology of Asia. J. Asian Earth Sci. 2013, 72, 75–87. [Google Scholar] [CrossRef]
- Wallis, S.R.; Yamaoka, K.; Mori, H.; Ishiwatari, A.; Miyazaki, K.; Ueda, H. The Basement Geology of Japan from A to Z. Isl. Arc 2020, 29. [Google Scholar] [CrossRef]
- Kimura, K.; Hayasaka, Y. Zircon U–Pb Age and Nd Isotope Geochemistry of Latest Neoproterozoic to Early Paleozoic Oeyama Ophiolite: Evidence for Oldest MORB-Type Oceanic Crust in Japanese Accretionary System and Its Tectonic Implications. Lithos 2019, 342–343, 345–360. [Google Scholar] [CrossRef]
- Bose, S.; Das, K.; Torimoto, J.; Arima, M.; Dunkley, D.J. Evolution of the Chilka Lake Granulite Complex, Northern Eastern Ghats Belt, India: First Evidence of—780 Ma Decompression of the Deep Crust and Its Implication on the India–Antarctica Correlation. Lithos 2016, 263, 161–189. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The Making and Unmaking of a Supercontinent: Rodinia Revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Isozaki, Y.; Ehiro, M.; Nakahata, H.; Aoki, K.; Sakata, S.; Hirata, T. Cambrian Plutonism in Northeast Japan and Its Significance for the Earliest Arc-Trench System of Proto-Japan: New U–Pb Zircon Ages of the Oldest Granitoids in the Kitakami and Ou Mountains. J. Asian Earth Sci. 2015, 108, 136–149. [Google Scholar] [CrossRef]
- Tagiri, M.; Dunkley, D.J.; Adahi, T.; Hiroi, Y.; Fanning, C.M. SHRIMP Dating of Magmatism in the Hitachi Metamorphic Terrane, Abukuma Belt, Japan: Evidence for a Cambrian Volcanic Arc. Isl. Arc 2011, 20, 259–279. [Google Scholar] [CrossRef]
- Sakashima, T.; Terada, K.; Takeshita, T.; Sano, Y. Large-Scale Displacement along the Median Tectonic Line, Japan: Evidence from SHRIMP Zircon U–Pb Dating of Granites and Gneisses from the South Kitakami and Paleo-Ryoke Belts. J. Asian Earth Sci. 2003, 21, 1019–1039. [Google Scholar] [CrossRef]
- Kunugiza, K.; Goto, A. Juvenile Japan: Hydrothermal Activity of the Hida-Gaien Belt Indicating Initiation of Subduction of Proto-Pacific Plate in ca. 520 Ma. Chigaku Zasshi (J. Geogr.) 2010, 119, 279–293. [Google Scholar] [CrossRef]
- Tsujimori, T.; Harlow, G.E. Jadeitite (Jadeite Jade) from Japan: History, Characteristics, and Perspectives. J. Mineral. Petrol. Sci. 2017, 112, 184–196. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P. Age and Petrogenesis of Plagiogranite Intrusions in the Ankara Melange, Central Turkey. Isl. Arc 2006, 15, 44–57. [Google Scholar] [CrossRef]
- Samson, S.D.; Inglis, J.D.; D’Lemos, R.S.; Admou, H.; Blichert-Toft, J.; Hefferan, K. Geochronological, Geochemical, and Nd–Hf Isotopic Constraints on the Origin of Neoproterozoic Plagiogranites in the Tasriwine Ophiolite, Anti-Atlas Orogen, Morocco. Precambrian Res. 2004, 135, 133–147. [Google Scholar] [CrossRef]
- Rioux, M.; Bowring, S.; Kelemen, P.; Gordon, S.; Miller, R.; Dudás, F. Tectonic Development of the Samail Ophiolite: High-Precision U-Pb Zircon Geochronology and Sm-Nd Isotopic Constraints on Crustal Growth and Emplacement. J. Geophys. Res. Solid Earth 2013, 118, 2085–2101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-L.; Santosh, M.; Zou, H.-B.; Li, H.-K.; Huang, W.-C. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U–Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos 2013, 179, 263–274. [Google Scholar] [CrossRef]
- Arena, K.R.; Hartmann, L.A.; Lana, C. Evolution of Neoproterozoic Ophiolites from the Southern Brasiliano Orogen Revealed by Zircon U-Pb-Hf Isotopes and Geochemistry. Precambrian Res. 2016, 285, 299–314. [Google Scholar] [CrossRef]
- Lissenberg, C.J.; Rioux, M.; Shimizu, N.; Bowring, S.A.; Mével, C. Zircon Dating of Oceanic Crustal Accretion. Science 2009, 323, 1048–1050. [Google Scholar] [CrossRef]
- Karaoglan, F.; Parlak, O.; Klotzli, U.; Thoni, M.; Koller, F. U–Pb and Sm–Nd Geochronology of the Kızıldağ (Hatay, Turkey) Ophiolite: Implications for the Timing and Duration of Suprasubduction Zone Type Oceanic Crust Formation in the Southern Neotethys. Geol. Mag. 2013, 150, 283–299. [Google Scholar] [CrossRef]
- Griffin, W.L.; Belousova, E.A.; Shee, S.R.; Pearson, N.J.; O’Reilly, S.Y. Archean Crustal Evolution in the Northern Yilgarn Craton: U–Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Res. 2004, 131, 231–282. [Google Scholar] [CrossRef]
- Knudsen, T.-L.; Griffin, W.; Hartz, E.; Andresen, A.; Jackson, S. In-Situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contrib. Mineral. Petrol. 2001, 141, 83–94. [Google Scholar] [CrossRef]
- Thirlwall, M.F.; Walder, A.J. In Situ Hafnium Isotope Ratio Analysis of Zircon by Inductively Coupled Plasma Multiple Collector Mass Spectrometry. Chem. Geol. 1995, 122, 241–247. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contrib. Mineral. Petrol. 2015, 170, 1–26. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Cheadle, M.J.; Mazdab, F.K.; Wooden, J.L.; Swapp, S.; Schwartz, J.J. On the Occurrence, Trace Element Geochemistry, and Crystallization History of Zircon from in Situ Ocean Lithosphere. Contrib. Mineral. Petrol. 2009, 158, 757–783. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Ichiyama, Y.; Koshiba, T.; Ito, H.; Tamura, A. Geochemistry and Magmatic Zircon U–Pb Dating of Amphibolite Blocks in the Omi Serpentinite Mélange, North Central Japan: Possible Subduction of the Cambrian Oceanic Crust. J. Mineral. Petrol. Sci. 2020, 115, 313–321. [Google Scholar] [CrossRef]
- Ichiyama, Y.; Ito, H.; Hokanishi, N.; Tamura, A.; Arai, S. Plutonic Rocks in the Mineoka–Setogawa Ophiolitic Mélange, Central Japan: Fragments of Middle to Lower Crust of the Izu–Bonin–Mariana Arc? Lithos 2017, 282–283, 420–430. [Google Scholar] [CrossRef]
- Sawada, H.; Isozaki, Y.; Sakata, S. Fragments of the Early Paleozoic Orogenic Belt from Tokyo Metropolis, Japan. J. Geol. Soc. Jpn. 2020, 126, 2020–2026. [Google Scholar] [CrossRef]
- Sawada, H.; Isozaki, Y.; Aoki, S.; Sakata, S.; Sawaki, Y.; Hasegawa, R.; Nakamura, Y. The Late Jurassic Magmatic Protoliths of the Mikabu Greenstones in SW Japan: A Fragment of an Oceanic Plateau in the Paleo-Pacific Ocean. J. Asian Earth Sci. 2019, 169, 228–236. [Google Scholar] [CrossRef]
- Tominaga, K.; Hara, H. Paleogeography of Late Jurassic Large-Igneous-Province Activity in the Paleo-Pacific Ocean: Constraints from the Mikabu Greenstones and Chichibu Accretionary Complex, Kanto Mountains, Central Japan. Gondwana Res. 2021, 89, 177–192. [Google Scholar] [CrossRef]
- Fu, B.; Valley, J.W.; Kita, N.T.; Spicuzza, M.J.; Paton, C.; Tsujimori, T.; Bröcker, M.; Harlow, G.E. Multiple Origins of Zircons in Jadeitite. Contrib. Mineral. Petrol. 2010, 159, 769–780. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yanagi, T. U-Pb Dating of Zircon in Jadeite Rock in Oosayama Serpentinite Melange from Okayama Pref., Southwest Japan. Joint Annual Meeting of the Japanese Association of Mineralogists, Petrologists, and Economic Geologists, and The Mineral Society of Japan. Abstract 1998, 15, 190. [Google Scholar]
- Tsujimori, T.; Liou, J.G.; Wooden, J.; Miyamoto, T. U-Pb Dating of Large Zircons in Low-Temperature Jadeitite from the Osayama Serpentinite Mélange, Southwest Japan: Insights into the Timing of Serpentinization. Int. Geol. Rev. 2005, 47, 1048–1057. [Google Scholar] [CrossRef]
- Ozawa, K.; Maekawa, H.; Shibata, K.; Asahara, Y.; Yoshikawa, M. Evolution Processes of Ordovician-Devonian Arc System in the South-Kitakami Massif and Its Relevance to the Ordovician Ophiolite Pulse. Island Arc 2015, 24, 73–118. [Google Scholar] [CrossRef]
- Ishiwatari, A. Time-Space Distribution and Petrologic Diversity of Japanese Ophiolites; Springer: Dordrecht, The Netherlands, 1991; pp. 723–743. [Google Scholar]
- Kurokawa, K. Petrology of the Oeyama Ophiolitic Complex in the Inner Zone of Southwest Japan. Ser. E (Geol. Mineral.) Sci. Rep. Niigata Univ. 1985, 6, 37–113. [Google Scholar]
- Tsujimori, T. Petrogenesis of the Fuko Pass High-Pressure Metacumulate from the Oeyama Peridotite Body, Southwestern Japan: Evidence for Early Paleozoic Subduction Metamorphism. Mem. Geol. Soc. Jpn. 1999, 52, 287–302. [Google Scholar]
- Tsujimori, T.; Ishiwatari, A.; Banno, S. Discovery of Eclogitic Glaucophane Schist from the Omi Area, Renge Metamorphic Belt, the Inner Zone of South Western Japan. J. Geol. Soc. Jpn. 2000, 106, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Shibata, K. Modes of Occurrence and K-Ar Ages Ofmetagabbroic Rocks in the “Sangun Metamorphic Belt”, Southwest Japan. Mem. Geol. Soc. Jpn. 1989, 33, 343–357. [Google Scholar]
- Shibata, K.; Uchiumi, S.; Nakagawa, T. K-Ar Age Results-1. Bull. Geol. Surv. Jpn. 1979, 30, 675–686. [Google Scholar]
- Tsujimori, T.; Itaya, T. Blueschist-facies Metamorphism during Paleozoic Orogeny in Southwestern Japan: Phengite K–Ar Ages of Blueschist-facies Tectonic Blocks in a Serpentinite Melange beneath Early Paleozoic Oeyama Ophiolite. Isl. Arc 1999, 8, 190–205. [Google Scholar] [CrossRef]
- Abduriyim, A.; Saruwatari, K.; Katsurada, Y. Apanese Jadeite: History, Characteristics, and Comparison with Other Sources. Gems Gemol. 2017, 53, 48–67. [Google Scholar] [CrossRef]
- Takasu, A.; Sakamoto, S.; Kashiwabara, Y. Mineral Paragenesis and Chemical Compositions of the Constituent Minerals of Jadeitites from the Osayama Area m the Sangun Metamorphic Belt, Southwest Japan. Bull. Fac. Sci. Technol. Shimane Univ. Ser. A 2000, 34, 1–12. [Google Scholar]
- Tsutsumi, Y.; Yokoyama, K.; Kasatkin, S.A.; Golozubov, V.v. Zircon U–Pb Age of Granitoids in the Maizuru Belt, Southwest Japan and the Southernmost Khanka Massif, Far East Russia. J. Mineral. Petrol. Sci. 2014, 109, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Kunugiza, K.; Nakamaru, E.; Goto, A.; Kobayashi, K.; Ota, T.; Miyajima, H.; Yokoyama, K. In–Situ U–Pb Zircon Age Dating Deciphering the Formation Event of the Omphacite Growth over Relict Edenitic Pargasite in Omphacite–Bearing Jadeitite of the Itoigawa–Omi Area of the Hida–Gaien Belt, Central Japan. J. Mineral. Petrol. Sci. 2017, 112, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T.D.; Suzuki, T.; Kon, Y.; Hirata, T. Determinations of Rare Earth Element Abundance and U-Pb Age of Zircons Using Multispot Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 8892–8899. [Google Scholar] [CrossRef]
- Makino, Y.; Kuroki, Y.; Hirata, T. Determination of Major to Trace Elements in Metallic Materials Based on the Solid Mixing Calibration Method Using Multiple Spot-Laser Ablation-ICP-MS. J. Anal. At. Spectrom. 2019, 34, 1794–1799. [Google Scholar] [CrossRef]
- Obayashi, H.; Tanaka, M.; Hattori, K.; Sakata, S.; Hirata, T. In Situ 207 Pb/ 206 Pb Isotope Ratio Measurements Using Two Daly Detectors Equipped on an ICP-Mass Spectrometer. J. Anal. At. Spectrom. 2017, 32, 686–691. [Google Scholar] [CrossRef]
- Hattori, K.; Sakata, S.; Tanaka, M.; Orihashi, Y.; Hirata, T. U–Pb Age Determination for Zircons Using Laser Ablation-ICP-Mass Spectrometry Equipped with Six Multiple-Ion Counting Detectors. J. Anal. At. Spectrom. 2017, 32, 88–95. [Google Scholar] [CrossRef]
- Sawaki, Y.; Asanuma, H.; Abe, M.; Hirata, T. U–Pb Ages of Granitoids around the Kofu Basin: Implications for the Neogene Geotectonic Evolution of the South Fossa Magna Region, Central Japan. Isl. Arc 2020, 29, e12361. [Google Scholar] [CrossRef]
- Jochum, K.P.; Nohl, U.; Herwig, K.; Lammel, E.; Stoll, B.; Hofmann, A.W. GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostand. Geoanalytical Res. 2005, 29, 333–338. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U–Pb Zircon Geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Iwano, H.; Orihashi, Y.; Hirata, T.; Ogasawara, M.; Danhara, T.; Horie, K.; Hasebe, N.; Sueoka, S.; Tamura, A.; Hayasaka, Y.; et al. An Inter-Laboratory Evaluation of OD-3 Zircon for Use as a Secondary U-Pb Dating Standard. Isl. Arc 2013, 22, 382–394. [Google Scholar] [CrossRef]
- Iizuka, T.; Hirata, T. Improvements of Precision and Accuracy in in Situ Hf Isotope Microanalysis of Zircon Using the Laser Ablation-MC-ICPMS Technique. Chem. Geol. 2005, 220, 121–137. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Gao, S.; Liu, W.; Zhang, W.; Tong, X.; Lin, L.; Zong, K.; Li, M.; Chen, H.; et al. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391. [Google Scholar] [CrossRef]
- Thirlwall, M.F.; Anczkiewicz, R. Multidynamic Isotope Ratio Analysis Using MC–ICP–MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. Int. J. Mass Spectrom. 2004, 235, 59–81. [Google Scholar] [CrossRef]
- Chu, N.-C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.A.; Papanastassiou, D.A.; Tombrello, T.A. Ca Isotope Fractionation on the Earth and Other Solar System Materials. Geochim. Et Cosmochim. Acta 1978, 42, 1075–1090. [Google Scholar] [CrossRef]
- Patchett, P.J.; Tatsumoto, M. A Routine High-Precision Method for Lu-Hf Isotope Geochemistry and Chronology. Contrib. Mineral. Petrol. 1981, 75, 263–267. [Google Scholar] [CrossRef]
- Gain, S.E.M.; Gréau, Y.; Henry, H.; Belousova, E.; Dainis, I.; Griffin, W.L.; O’Reilly, S.Y. Mud Tank Zircon: Long-Term Evaluation of a Reference Material for U-Pb Dating, Hf-Isotope Analysis and Trace Element Analysis. Geostand. Geoanalytical Res. 2019, 43, 339–354. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanalytical Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID–TIMS, ELA–ICP–MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanalytical Res. 2005, 29, 183–195. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand. Geoanalytical Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Williams, I.S.; Buick, I.S.; Cartwright, I. An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. J. Metamorph. Geol. 2004, 14, 29–47. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology 2000, 28, 627. [Google Scholar] [CrossRef]
- Buriánek, D.; Janoušek, V.; Hanžl, P.; Jiang, Y.; Schulmann, K.; Lexa, O.; Altanbaatar, B. Petrogenesis of the Late Carboniferous Sagsai Pluton in the SE Mongolian Altai. J. Geosci. (Czech Repub.) 2016, 61, 67–92. [Google Scholar] [CrossRef] [Green Version]
- Balaghi Einalou, M.; Sadeghian, M.; Zhai, M.; Ghasemi, H.; Mohajjel, M. Zircon U–Pb Ages, Hf Isotopes and Geochemistry of the Schists, Gneisses and Granites in Delbar Metamorphic-Igneous Complex, SE of Shahrood (Iran): Implications for Neoproterozoic Geodynamic Evolutions of Central Iran. J. Asian Earth Sci. 2014, 92, 92–124. [Google Scholar] [CrossRef]
- Gan, B.; Li, Z.; Song, Z.; Li, J. Middle Cambrian Granites in the Dunhuang Block (NW China) Mark the Early Subduction of the Southernmost Paleo-Asian Ocean. Lithos 2020, 372–373, 105654. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, Y.; Li, L.; She, H.; Jiang, L.; Du, B.; Liu, Y.; Li, W.; Wen, Q.; Liang, C. Subduction, Accretion, and Collision during the Neoproterozoic-Cambrian Orogeny in the Great Xing’an Range, NE China: Insights from Geochemistry and Geochronology of the Ali River Ophiolitic Mélange and Arc-Type Granodiorites. Precambrian Res. 2018, 311, 117–135. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Gao, P.; Zheng, Y.-F. The Anatectic Effect on the Zircon Hf Isotope Composition of Migmatites and Associated Granites. Lithos 2015, 238, 174–184. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Münker, C.; Polat, A.; König, S.; Mezger, K.; Rosing, M.T. Highly Depleted Hadean Mantle Reservoirs in the Sources of Early Archean Arc-like Rocks, Isua Supracrustal Belt, Southern West Greenland. Geochim. Cosmochim. Acta 2010, 74, 7236–7260. [Google Scholar] [CrossRef]
- Choi, S.; Mukasa, S.; Andronikov, A.; Osanai, Y.; Harley, S.; Kelly, N. Lu–Hf Systematics of the Ultra-High Temperature Napier Metamorphic Complex in Antarctica: Evidence for the Early Archean Differentiation of Earth’s Mantle. Earth Planet. Sci. Lett. 2006, 246, 305–316. [Google Scholar] [CrossRef]
- Morino, P.; Caro, G.; Reisberg, L. Differentiation Mechanisms of the Early Hadean Mantle: Insights from Combined 176Hf-142,143Nd Signatures of Archean Rocks from the Saglek Block. Geochim. Cosmochim. Acta 2018, 240, 43–63. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Li, X.-H.; Jin, W.; Zhang, J.-H. Eoarchean Ultra-Depleted Mantle Domains Inferred from ca. 3.81 Ga Anshan Trondhjemitic Gneisses, North China Craton. Precambrian Res. 2015, 263, 88–107. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, H.; Niki, S.; Nagata, M.; Hirata, T. Zircon U–Pb–Hf Isotopic and Trace Element Analyses for Oceanic Mafic Crustal Rock of the Neoproterozoic–Early Paleozoic Oeyama Ophiolite Unit and Implication for Subduction Initiation of Proto-Japan Arc. Minerals 2022, 12, 107. https://doi.org/10.3390/min12010107
Sawada H, Niki S, Nagata M, Hirata T. Zircon U–Pb–Hf Isotopic and Trace Element Analyses for Oceanic Mafic Crustal Rock of the Neoproterozoic–Early Paleozoic Oeyama Ophiolite Unit and Implication for Subduction Initiation of Proto-Japan Arc. Minerals. 2022; 12(1):107. https://doi.org/10.3390/min12010107
Chicago/Turabian StyleSawada, Hikaru, Sota Niki, Mitsuhiro Nagata, and Takafumi Hirata. 2022. "Zircon U–Pb–Hf Isotopic and Trace Element Analyses for Oceanic Mafic Crustal Rock of the Neoproterozoic–Early Paleozoic Oeyama Ophiolite Unit and Implication for Subduction Initiation of Proto-Japan Arc" Minerals 12, no. 1: 107. https://doi.org/10.3390/min12010107
APA StyleSawada, H., Niki, S., Nagata, M., & Hirata, T. (2022). Zircon U–Pb–Hf Isotopic and Trace Element Analyses for Oceanic Mafic Crustal Rock of the Neoproterozoic–Early Paleozoic Oeyama Ophiolite Unit and Implication for Subduction Initiation of Proto-Japan Arc. Minerals, 12(1), 107. https://doi.org/10.3390/min12010107