Peri-Gondwanan Provenance and Geodynamic Evolution of The Guadaiza Nappe (Alpujarride Complex, Betic Cordilleras, Spain): Insights on The Paleotethyan Paleogeography
Abstract
:1. Introduction
2. Geological Setting
3. Sample Location and Description
4. Analytical Methods
5. LA-ICP-MS Results
5.1. Sample tb-2009-7 (Schist)
5.2. Sample tb-07-845 (Istan Migmatite)
5.3. Sample Gu-35-2 (Hoyo Del Bote Migmatite)
5.4. Sample tb-18-06 (Quartzite Interlayered with Marbles)
6. Discussion
6.1. Age of Sedimentation
6.2. Zircon-Forming Events
6.3. Age of the Migmatization events
7. Conclusions
- (1)
- The metapelitic basement of the Guadaiza nappe is defined by the wide presence of Paleozoic, Ediacaran–Cryogenian, Tonian–Stenian and Paleoproterozoic zircon ages and the scarcity of Mesoproterozoic and Archean zircon ages that agrees with a basement location somewhere within the West African Craton, the Metasaharan Craton and the Hun Superterrane during the aperture of the Paleotethys.
- (2)
- The prominent peak at ca. 299 Ma defined mainly in the Istan migmatites is considered as the age of the late-Variscan metamorphism that led to the anatexis and migmatization of the metapelitic sequence.
- (3)
- The age of the undifferentiated Paleozoic basement of Guadaiza can be reassigned as Silurian–Carboniferous.
- (4)
- The maximum age of sedimentation, ca. 289 Ma, and the idiomorphic morphology of Paleozoic zircon crystals of the studied quartzites interlayered with Triassic marbles, suggest a proximal source area for the zircons of the cover of the Guadaiza nappe. Therefore, the Alboran microplate basement agrees with being such a proximal zircon source rather than the Iberian plate. The paleogeographic reconstructions situate the Triassic of the Internal Zones of the Betic Cordilleras in the northern margin of the epicontinental platform of the Alboran microplate.
- (5)
- The emplacement of the Ronda peridotites promoted zircon recrystallization in the Istan migmatites some tens of meters away from the dynamothermal aureole at Alpine times (ca. 21 Ma).
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Andrieux, J.; Fontboté, J.M.; Mattauer, M. Sur un modèle explicatif de l’Arc de Gibraltar. Earth Planet. Sci. Lett. 1971, 12, 191–198. [Google Scholar] [CrossRef]
- Bouillin, J.P.; Durand-Delga, M.; Olivier, P. Betic-Rifian and Tyrrenhian arcs: Distinctive features, genesis and development stages. In The Origin of Arcs; Wezel, F.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 281–304. [Google Scholar]
- Guerrera, F.; Martín-Algarra, A.; Perrone, V. Late Oligocene–Miocene syn-late-orogenic successions in Western and Central Mediterranean chains from Betic Cordillera to Southern Apennines. Terranova 1993, 5, 525–544. [Google Scholar] [CrossRef]
- Balanyá, J.C.; García-Dueñas, V. Grandes fallas de contracción y de extensión implicadas en el contacto entre los dominios de Alborán y Sudibérico en el arco de Gibraltar. Geogaceta 1986, 1, 19–21. [Google Scholar]
- Stampfli, G.M.; Borel, G.D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic ocean isochrones. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Stampfli, G.M.; Borel, G.; Bussy, F. The organization of pre-Variscan basement areas at the north-Gondwanan margin. Int. J. Earth Sci. 2002, 91, 35–52. [Google Scholar] [CrossRef]
- Giacommini, F.; Bomparola, R.M.; Ghezzo, C.; Guldbransen, H. The geodynamic evolution of the Southern European Variscides: Constraints from the U/Pb geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences of Sardinia (Italy). Contrib. Mineral. Petrol. 2006, 152, 19–42. [Google Scholar] [CrossRef]
- Micheletti, F.; Barbey, P.; Fornelli, A.; Piccarreta, G.; Deloule, E. Latest Precambrian to early Cambrian U-Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. Int. J. Earth Sci. 2007, 96, 843–860. [Google Scholar] [CrossRef]
- Esteban, J.J.; Tubía, J.M.; Cuevas, J.; Vegas, N.; Sergeev, S.; Larionov, A. Peri-Gondwanan provenance of pre-Triassic metamorphic sequences in the western Alpujarride nappes (Betic Cordillera, southern Spain). Gondwana Res. 2011, 20, 443–449. [Google Scholar] [CrossRef]
- Williams, I.S.; Fiannacca, P.; Cirrincione, R.; Pezzino, A. Peri-Gondwanan origin and early geodynamic history of NE Sicily: A zircon tale from the basement of the Peloritani Mountains. Gondwana Res. 2012, 22, 855–865. [Google Scholar] [CrossRef]
- Stampfli, G.M. Tethyan oceans. In Tectonics and Magmatism in Turkey and the Surrounding Area; Bozurt, E., Winchester, J.A., Piper, J.D.A., Eds.; Special Publication; Geological Society: London, UK, 2000; Volume 173, pp. 1–23. [Google Scholar]
- von Raumer, J.F.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents- the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef] [Green Version]
- von Raumer, J.F.; Stampfli, G.M. The birth of the Rheic Ocean–Early Palaeozoic subsidence patterns and tectonic plate scenarios. Tectonophysics 2008, 461, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Stampfli, G.M.; Hochard, C.; Vérard, C.; Wilhem, C.; von Raumer, J.F. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef] [Green Version]
- von Raumer, J.F.; Stampfli, G.M.; Arenas, R.; Sánchez Martínez, S. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 2015, 104, 1107–1121. [Google Scholar] [CrossRef]
- Esteban, J.J.; Cuevas, J.; Vegas, N.; Tubía, J.M. Deformation and kinematics in a melt-bearing shear zone from the Western Betic Cordilleras (Southern Spain). J. Struct. Geol. 2008, 30, 380–393. [Google Scholar] [CrossRef]
- Tubía, J.M. Estructura de los Alpujárrides occidentales: Cinemática y condiciones de emplazamiento de las peridotitas de Ronda. Parte I: Características litológicas. Boletín Geológico Minero 1988, 99, 165–212. [Google Scholar]
- Tubía, J.M.; Cuevas, J.; Navarro-Vilá, F.; Álvarez, F.; Aldaya, F. Tectonic evolution of the Alpujarride Complex (Betic Cordillera, southern Spain). J. Struct. Geol. 1992, 14, 193–203. [Google Scholar] [CrossRef]
- Azañón, J.M.; García-Dueñas, V.; Martínez-Martínez, J.M.; Crespo-Blanc, A. Alpujarride tectonic sheets in the central Betics and similar eastern allochthonous units (SE Spain). C. R. Acad. Sci. Paris 1994, 318, 667–674. [Google Scholar]
- Acosta, A. Estudio de los Fenómenos de Fusión Cortical y Generación de Granitoides Asociados a las Peridotitas de Ronda. Ph.D. Thesis, Granada University, Granada, Spain, 1997. [Google Scholar]
- Sánchez-Rodríguez, L. Pre-Apine and Alpine Evolution of the Ronda Ultramafic Complex and Its Country-Rocks (Betic Chain, Southern Spain): U-Pb SHRIMP Zircon and Fission Track Dating. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1998. [Google Scholar]
- Tubía, J.M.; Cuevas, J.; Esteban, J.J. Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). J. Struct. Geol. 2013, 50, 148–160. [Google Scholar] [CrossRef]
- Esteban, J.J.; Cuevas, J.; Tubía, J.M.; Sergeev, S.; Larionov, A. A revised Aquitanian age for the emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). Geol. Mag. 2011, 148, 183–187. [Google Scholar] [CrossRef]
- Priem, H.N.A.; Boelrijk, N.A.I.M.; Hebeda, E.A.T.; Oen, I.S.; Verdurmen, E.A.; Verschure, R.H. Isotopic dating of the emplacement of the ultramafic masses in the Serrania de Ronda. Contrib. Mineral. Petrol. 1979, 70, 103–109. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation inductively coupled plasma mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualization and processing of mass spectrometry data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Paul, B.; Paton, C.; Norris, A.; Woodhead, J.; Hellstrom, J.; Hergt, J.; Greig, A. CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment. J. Anal. At. Spectrom. 2012, 27, 700–706. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Acosta, A.; Rubatto, D.; Bartoli, O.; Cesare, B.; Meli, S.; Pedrera, A.; Azor, A.; Tajcmanová, L. Age of the anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 2014, 210–211, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Cambeses, A.; Scarrow, J.H.; Montero, P.; Lázaro, C.; Bea, F. Palaeogeography and crustal evolution of the Ossa-Morena Zone, southwest Iberia, and the North Gondwana margin during the Cambro-Ordovician: A review of isotopic evidence. Inter. Geol. Rev. 2017, 59, 94–130. [Google Scholar] [CrossRef]
- Szczepanski, J.; Turniak, K.; Anczkiewicz, R.; Gleichner, P. Dating of detrital zircons and tracing the provenance of quartzites from Bystrzyckie Mts: Implications for the tectonic setting of the Early Palaeozoic sedimentary basin developed on the Gondwana margin. Inter. J. Earth Sci. 2020, 109, 2049–2079. [Google Scholar] [CrossRef]
- Stephan, T.; Kroner, U.; Romer, R.L.; Rösel, D. From a bipartite Gondwanan shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana. Earth-Sci. Rev. 2019, 192, 491–512. [Google Scholar] [CrossRef]
- Gibbons, W.; Moreno, T. The Geology of Spain; The Geological Society: London, UK, 2002; 649p. [Google Scholar]
- Harley, S.L.; Kelly, N.M.; Möller, A. Zircon behavior and the thermal histories of mountain chains. Elements 2007, 3, 25–30. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2007, 53, 27–55. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Fornelli, A.; Micheletti, F.; Piccarreta, G. Late-Proterozoic to Paleozoic history of the peri-Gondwana Calabria-Peloritani Terrane inferred from a review of zircon chronology. SpringerPlus 2016, 5, 212. [Google Scholar] [CrossRef] [Green Version]
- Ladenberger, A.; Be’eri-Shlevin, Y.; Claesson, S.; Gee, D.G.; Majka, J.; Romanova, I.V. Tectonometamorphic evolution of the Areskutan Nappe-Caledonian history revealed by SIMS U-Pb zircon geochronology. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, R., Chew, D.M., Eds.; Special Publication; Geological Society: London, UK, 2014; Volume 390, pp. 337–368. [Google Scholar]
- Kozur, H.; Mulder-Blanken, C.W.H.; Simon, O.J. On the Triassic of the Betic Cordilleras (southern Spain), with special emphasis on holothurian sclerites. Stratigr. Palaeontol. 1985, 88, 83–110. [Google Scholar]
- Trombeta, A.; Cirrincione, R.; Corfu, F.; Mazzoleni, P.; Pezzino, A. Mid-Ordovician U-Pb ages of porphyroids in the Peloritan Mountains (NE Sicily): Palaeogeographical implications for the evolution of the Alboran microplate. J. Geol. Soc. Lond. 2004, 161, 265–276. [Google Scholar] [CrossRef]
- Somma, R.; Navas-Parejo, P.; Martín-Algarra, A.; Rodríguez-Cañero, R.; Perrone, V.; Martínez-Pérez, C. Paleozoic stratigraphy of the Longi-Taormina Unit (Peloritanian Mountains, southern Italy). Stratigraphy 2013, 10, 127–150. [Google Scholar]
- Fornelli, A.; Festa, V.; Micheletti, F.; Spiess, R.; Tursi, F. Building an Orogen: Review of U-Pb Zircon Ages from the Calabria-Peloritani Terrane to Constrain the timing of the Southern Variscan Belt. Minerals 2020, 10, 944. [Google Scholar] [CrossRef]
- Peucat, J.J.; Mahdjoub, Y.; Drareni, A. U-Pb and Rb-Sr geochronological evidence for late Hercynian tectonic and Alpine overthrusting in Kabylian metamorphic basement massifs (northeastern Algeria). Tectonophysics 1996, 258, 195–213. [Google Scholar] [CrossRef]
- Loomis, M.T. Tertiary mantle diapirism, orogeny and plate tectonics east of the Strait of Gibraltar. Geol. Soc. Amer. Bull. 1975, 89, 172–180. [Google Scholar] [CrossRef]
- Platt, J.P.; Whitehouse, M.J. Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): Evidence from U-Pb zircon ages. Earth Planet. Sci. Lett. 1999, 171, 591–605. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban, J.J.; Cuevas, J.; Tubía, J.M. Peri-Gondwanan Provenance and Geodynamic Evolution of The Guadaiza Nappe (Alpujarride Complex, Betic Cordilleras, Spain): Insights on The Paleotethyan Paleogeography. Minerals 2022, 12, 325. https://doi.org/10.3390/min12030325
Esteban JJ, Cuevas J, Tubía JM. Peri-Gondwanan Provenance and Geodynamic Evolution of The Guadaiza Nappe (Alpujarride Complex, Betic Cordilleras, Spain): Insights on The Paleotethyan Paleogeography. Minerals. 2022; 12(3):325. https://doi.org/10.3390/min12030325
Chicago/Turabian StyleEsteban, José Julián, Julia Cuevas, and José María Tubía. 2022. "Peri-Gondwanan Provenance and Geodynamic Evolution of The Guadaiza Nappe (Alpujarride Complex, Betic Cordilleras, Spain): Insights on The Paleotethyan Paleogeography" Minerals 12, no. 3: 325. https://doi.org/10.3390/min12030325
APA StyleEsteban, J. J., Cuevas, J., & Tubía, J. M. (2022). Peri-Gondwanan Provenance and Geodynamic Evolution of The Guadaiza Nappe (Alpujarride Complex, Betic Cordilleras, Spain): Insights on The Paleotethyan Paleogeography. Minerals, 12(3), 325. https://doi.org/10.3390/min12030325