A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Recovery of Au Ions with Varying Initial Gold Concentrations
3.2. Recovery of Au Ions with Varying Size of Al
3.3. Recovery of Au Ions with Varying Size of AC
3.4. Recovery of Au Ions with Varying Quantity of Al and AC
3.5. Recovery of Au Ions with Varying Temperature
3.6. Recovery of Au Ions with Varying Shaking Speed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 22 November 2021).
- Park, I.; Kanazawa, Y.; Sato, N.; Galtchandmani, P.; Jha, M.K.; Tabelin, C.B.; Jeon, S.; Ito, M.; Hiroyoshi, N. Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation. Minerals 2021, 11, 1432. [Google Scholar] [CrossRef]
- Arima, H.; Fujita, T.; Uen, W.T. Using Nickel as a Catalyst in Ammonium Thiosulfate Leaching for Gold Extraction. Mater. Trans. 2004, 45, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Tabelin, M.V.; Alonozo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Kitajima, N.; Park, I.; Hiroyoshi, N. Gold recovery from shredder light fraction of E-waste recycling plant by flotation-ammonium thiosulfate leaching. Waste Manag. 2018, 77, 195–202. [Google Scholar] [CrossRef]
- Guerra, E.; Dreisinger, D.B. A study of the factors affecting copper cementation of gold from ammoniacal thiosulphate solution. Hydrometallurgy 1999, 51, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, M.I.; Brunt, S.D. The quantification of thiosulfate and polythionates in gold leach solutions and on anion exchange. Hydrometallurgy 2007, 89, 52–60. [Google Scholar] [CrossRef]
- Jeon, S.; Tabelin, C.B.; Park, I.; Nagata, Y.; Ito, M.; Hiroyoshi, N. Ammonium thiosulfate extraction of gold from printed circuit boards (PCBs) of end-of-life mobile phones and its recovery from pregnant leach solution by cementation. Hydrometallurgy 2020, 191, 105214. [Google Scholar] [CrossRef]
- Lampinen, M.; Laari, A.; Turunen, I. Ammoniacal thiosulfate leaching of pressure oxidized sulfide gold concentrate with low reagent consumption. Hydrometallurgy 2015, 151, 1–9. [Google Scholar] [CrossRef]
- Grosse, A.C.; Dicinoski, G.W.; Shaw, M.J.; Haddad, P.R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy 2003, 69, 1–21. [Google Scholar] [CrossRef]
- Gallagher, N.P.; Hendrix, J.L.; Milosavljevic, E.B.; Nelson, J.H.; Solujic, L. Affinity of activated carbon towards some gold(I) complexes. Hydrometallurgy 1990, 25, 305–316. [Google Scholar] [CrossRef]
- Kenna, C.C.; Ritchie, I.M.; Singh, P. The cementation of gold by iron from cyanide solutions. Hydrometallurgy 1990, 23, 263–279. [Google Scholar] [CrossRef]
- Miller, J.D.; Wan, R.Y.; Parga, J.R. Characterization and electrochemical analysis of gold cementation from alkaline cyanide solution by suspended zinc particles. Hydrometallurgy 1990, 24, 373–392. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tran, T.; Wong, P.L.M. A kinetic study of the cementation of gold from cyanide solutions onto copper. Hydrometallurgy 1997, 46, 55–69. [Google Scholar] [CrossRef]
- Jeon, S.; Tabelin, C.B.; Takahashi, H.; Park, I.; Ito, M.; Hiroyoshi, N. Enhanced cementation of gold via galvanic interactions using activated carbon and zero-valent aluminum: A novel approach to recover gold ions from ammonium thiosulfate medium. Hydrometallurgy 2020, 191, 105165. [Google Scholar] [CrossRef]
- Hiskey, J.; Lee, J. Kinetics of gold cementation on copper in ammoniacal thiosulfate solutions. Hydrometallurgy 2003, 69, 45–56. [Google Scholar] [CrossRef]
- Karavasteva, M. Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron, and copper from ammonium thiosulfate-ammonia solutions. Hydrometallurgy 2010, 104, 119–122. [Google Scholar] [CrossRef]
- Dönmez, B.; Sevim, F.; Saraç, H. A kinetic study of the cementation of copper from sulphate solutions onto a rotating aluminum disc. Hydrometallurgy 1999, 53, 145–154. [Google Scholar] [CrossRef]
- Oo, M.T.; Tran, T. The effect of lead on the cementation of gold by zinc. Hydrometallurgy 1991, 26, 61–74. [Google Scholar] [CrossRef]
- Zhang, H.G.; Doyle, J.A.; Kenna, C.C.; La Brooy, S.R.; Hefter, G.T.; Ritchie, I.M. A kinetic and electrochemical study of the cementation of gold onto mild steel from acidic thiourea solutions. Electrochim. Acta 1996, 41, 389–395. [Google Scholar] [CrossRef]
- Demirkiran, N.; Ekmekyapar, A.; Kunkul, A.; Baysar, A. A kinetic study of copper cementation with zinc in aqueous solutions. Int. J. Miner. Process. 2007, 82, 80–85. [Google Scholar] [CrossRef]
- Wahab, J.A.; Derman, M.N.; Daud, Z.C. The effects of electrolyte temperature on formation of porous aluminum oxide films in anodizing process. Adv. Environ. Biol. 2013, 7, 3708–3713. [Google Scholar]
Initial Au Conc. | Al Area (cm2) | Rate Constant (cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
1 ppm | 166.7 | 6.05 × 10−5 | −1.08 × 10−1 | 0.9996 |
10 ppm | 166.7 | 1.19 × 10−4 | −2.11 × 10−1 | 0.9997 |
50 ppm | 166.7 | 1.61 × 10−4 | −2.87 × 10−1 | 0.9997 |
100 ppm | 166.7 | 2.08 × 10−4 | −3.70 × 10−1 | 0.9998 |
Al Size | Al Area (cm2) | Rate Constant (k, cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
−45 µm | 166.7 | 2.08 × 10−4 | −3.70 × 10−1 | 0.9998 |
+45−75 µm | 111.1 | 2.45 × 10−4 | −2.92 × 10−1 | 0.9996 |
+75−106 µm | 36.63 | 6.82 × 10−4 | −2.68 × 10−1 | 0.9994 |
+106−150 µm | 26.04 | 8.86 × 10−4 | −2.47 × 10−1 | 0.9985 |
AC Size | Al Area (cm2) | Rate Constant (k, cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
−45 µm | 166.7 | 2.08 × 10−4 | −3.67 × 10−1 | 0.9998 |
+0.2−0.5 mm | 166.7 | 1.79 × 10−4 | −3.19 × 10−1 | 0.9986 |
+1.0−2.0 mm | 166.7 | 1.71 × 10−4 | −3.04 × 10−1 | 0.9993 |
+4.0−5.0 mm | 166.7 | 1.76 × 10−4 | −3.13 × 10−1 | 0.9995 |
Al Quantity | Al Area (cm2) | Rate Constant (k, cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
0.01 g | 11.11 | 2.56 × 10−4 | −3.04 × 10−1 | 0.9993 |
0.05 g | 55.56 | 5.22 × 10−4 | −3.11 × 10−1 | 0.9997 |
0.1 g | 111.1 | 2.74 × 10−4 | −3.25 × 10−1 | 0.9996 |
0.15 g | 166.7 | 2.08 × 10−4 | −3.70 × 10−1 | 0.9998 |
AC quantity | Al area (cm2) | Rate constant (k, cm/s) | Reaction rate (ppm/s) | R2 |
0.01 g | 166.7 | 1.27 × 10−4 | −2.26 × 10−1 | 0.9996 |
0.05 g | 166.7 | 1.48 × 10−4 | −2.64 × 10−1 | 0.9995 |
0.1 g | 166.7 | 1.63 × 10−4 | −2.90 × 10−1 | 0.9991 |
0.15 g | 166.7 | 2.08 × 10−4 | −3.70 × 10−1 | 0.9998 |
Temperature | Al Area (cm2) | Rate Constant (k, cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
25 °C | 166.7 | 2.08 × 10−4 | −3.67 × 10−1 | 0.9998 |
35 °C | 166.7 | 1.06 × 10−4 | −1.88 × 10−1 | 0.9912 |
50 °C | 166.7 | 9.24 × 10−5 | −1.65 × 10−1 | 0.9987 |
Shaking Speed | Al Area (cm2) | Rate Constant (k, cm/s) | Reaction Rate (ppm/s) | R2 |
---|---|---|---|---|
80 rpm | 166.7 | 0.99 × 10−4 | −1.13 × 10−1 | 0.9035 |
120 rpm | 166.7 | 2.08 × 10−4 | −3.67 × 10−1 | 0.9998 |
160 rpm | 166.7 | 2.19 × 10−4 | −5.14 × 10−1 | 0.9919 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.; Bright, S.; Park, I.; Kuze, A.; Ito, M.; Hiroyoshi, N. A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System. Minerals 2022, 12, 91. https://doi.org/10.3390/min12010091
Jeon S, Bright S, Park I, Kuze A, Ito M, Hiroyoshi N. A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System. Minerals. 2022; 12(1):91. https://doi.org/10.3390/min12010091
Chicago/Turabian StyleJeon, Sanghee, Sharrydon Bright, Ilhwan Park, Akuru Kuze, Mayumi Ito, and Naoki Hiroyoshi. 2022. "A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System" Minerals 12, no. 1: 91. https://doi.org/10.3390/min12010091
APA StyleJeon, S., Bright, S., Park, I., Kuze, A., Ito, M., & Hiroyoshi, N. (2022). A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System. Minerals, 12(1), 91. https://doi.org/10.3390/min12010091