Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sieve Analysis
2.3. Float–Sink Analysis
2.4. Batch Flotation Test
2.5. XRD Test
2.6. Determination of Ash, Fluorine, Sulfur Contents, and Calorific Value
3. Results and Discussion
3.1. Mineralogical Characterization
3.2. Fluorine and Sulfur Distributions in Different Density Fractions of >0.5 mm Coal
3.3. Fluorine and Sulfur Distributions in Release Flotation of <0.5 mm Coal
3.4. A Proposed Beneficiation Circuit for <50 mm Coal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gao, G.; Yan, B.; Yang, L. Determination of total fluorine in coal by the combustion-hydrolysis/fluoride-ion selective electrode method. Fuel 1984, 63, 1552–1555. [Google Scholar] [CrossRef]
- Greta, E.; Dai, S.; Li, X. Fluorine in Bulgarian coals. Int. J. Coal Geol. 2013, 105, 16–23. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, H.; Gao, L.; Zheng, L.; Peng, Z. Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Process. Technol. 2004, 85, 1635–1646. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Q.; Zhou, J.; Cao, X.; Cen, K. Distribution of fluoride in the combustion products of coal. Huan Jing Ke Xue = Huanjing Kexue 2003, 24, 127–130. [Google Scholar]
- Sredović, I.; Rajaković, L. Pyrohydrolytic determination of fluorine in coal: A chemometric approach. J. Hazard. Mater. 2010, 177, 445–451. [Google Scholar] [CrossRef]
- Guo, S.; Yang, J.; Liu, Z. The fate of fluorine and chlorine during thermal treatment of coals. Environ. Sci. Technol. 2006, 40, 7886–7889. [Google Scholar] [CrossRef]
- Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems. J. Hazard. Mater. 2000, 74, 91–107. [Google Scholar] [CrossRef]
- Thomas, G.; Fariborz, G. Effect of geological processes on coal quality and utilization potential: Review with examples from western Canada. J. Hazard. Mater. 2000, 74, 109–124. [Google Scholar] [CrossRef]
- Luo, K.; Ren, D.; Xu, L.; Dai, S.; Cao, D.; Feng, F.; Tan, J.A. Fluorine content and distribution pattern in Chinese coals. Int. J. Coal Geol. 2004, 57, 143–149. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D. Fluorine concentration of coals in China—An estimation considering coal reserves. Fuel 2006, 85, 929–935. [Google Scholar] [CrossRef]
- Qi, Q.J.; Yu, G.S.; Li, F.W.; LIU, J.Z.; CEN, K.F. Inorganic/organic affinity and washing floatation characteristic of fluorine in coal. J. Liaoning Tech. Univ. Nat. Sci. Ed. 2006, 25, 481–484. [Google Scholar]
- Bu, X.; Chen, Y.; Ma, G.; Sun, Y.; Ni, C.; Xie, G. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time. Adv. Powder Technol. 2019, 30, 2703–2711. [Google Scholar] [CrossRef]
- Bu, X.; Chen, Y.; Ma, G.; Sun, Y.; Ni, C.; Xie, G. Wet and dry grinding of coal in a laboratory-scale ball mill: Particle-size distributions. Powder Technol. 2020, 359, 305–313. [Google Scholar] [CrossRef]
- Luo, K.; Xu, L.; Li, R.; Xiang, L. Fluorine emission from combustion of steam coal of North China Plate and Northwest China. Chin. Sci. Bull. 2002, 47, 1346–1350. [Google Scholar] [CrossRef]
- Zhou, C.-C.; Liu, C.; Zhang, N.-N.; Cong, L.-F.; Pan, J.-H.; Peng, C.-B. Fluorine in Coal: The Modes of Occurrence and its Removability by Froth Flotation. Int. J. Coal Prep. Util. 2018, 38, 149–161. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Ma, S. The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel 2004, 83, 2095–2098. [Google Scholar] [CrossRef]
- Liu, X. Evolution Of Migration Behavior of Fluofine in Coal and Sulfur-Containing Coal Molecular Structure. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2009. [Google Scholar]
- Wang, X.; Dai, S.; Sun, Y.; Li, D.; Zhang, W.; Zhang, Y.; Luo, Y. Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China. Fuel 2011, 90, 248–254. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Guohua, L.; Qiyan, F.; Xiaoli, D.; Yahong, C.; Wenbo, L.; Hui, W.; Bo, G.; Lai, Z.; Xin, W. Geochemical characteristics of fluorine in coal within Xiangning mining area, China, and associated mitigation countermeasures. Energy Explor. Exploit. 2019, 37, 1737–1751. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z. The Research of Content of Distribution and Accurrence Form of Fluorine Element in Coals from Nantong Coalfield in Chongqing, China. Master’s Thesis, Anhui University of Science and Technology, Huainan, China, 2016. [Google Scholar]
- Wu, X. Fluorin Eemission Behavior and Conversion Characteristic in Industrial and Power Plant Boiler during Coal Combustion. Master’s Thesis, Liaoning Technical University, Fuxin, China, 2005. [Google Scholar]
- Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; Aguero, K.J.d.; Padilla, D.D.; Tolt, T.L. High Gradient Magnetic Separation Applied to Environmental Remediation; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Liu, S.; Ye, X.; He, K.; Chen, Y.; Hu, Y. Simultaneous removal of Ni(II) and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode. J. Water Reuse Desalination 2016, 7, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Zheng, C.G.; Song, D.Y.; Liu, J.; Zhang, J.Y. Migration behavior and washability of fluorine in Guizhou coal during cleaning process. In Proceedings of the 6th International Symposium on Coal Combustion, Wuhan, China, 1–5 December 2007; pp. 593–599. [Google Scholar]
- Liu, D.; Sakai, Y.; Yamamoto, M.; Sadakata, M. Behavior of Fluorine in the Combustion of Chinese Coal in Small Furnaces. Energy Fuels 2006, 20, 1406–1410. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, G.; Zhu, G.; Zhao, P.; Ma, Z.; Zhang, B. Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion. Fuel 2020, 274, 117826. [Google Scholar] [CrossRef]
- Mohanty, M.K.; Honaker, R.Q.; Mondal, K.; Paul, B.C.; Ho, K. Trace Element Reductions in Fine Coal Using Advanced Physical Cleaning. Coal Prep. 1998, 19, 195–211. [Google Scholar] [CrossRef]
- Bu, X.; Ni, C.; Xie, G.; Peng, Y.; Ge, L.; Sha, J. Preliminary study on foreign slime for the gravity separation of coarse coal particles in a teeter bed separator. Int. J. Miner. Processing 2017, 160, 76–80. [Google Scholar] [CrossRef]
- Galvin, K.P.; Pratten, S.J.; Nicol, S.K. Dense medium separation using a teetered bed separator. Miner. Eng. 1999, 12, 1059–1081. [Google Scholar] [CrossRef]
- Jain, P.K. An analytical approach to explain complex flow in spiral concentrator and development of flow equations. Miner. Eng. 2021, 174, 107027. [Google Scholar] [CrossRef]
- Ma, G.; Bu, X.; Xie, G.; Peng, Y.; Sha, J.; Xia, W.; Wu, E. Comparative Study of Separation Performance of a Spiral and Dense-medium Cyclone on Cleaning Coal. Int. J. Coal Prep. Util. 2021, 41, 108–116. [Google Scholar] [CrossRef]
- Chen, J.; Chu, K.W.; Zou, R.P.; Yu, A.B.; Vince, A.; Barnett, G.D.; Barnett, P.J. How to optimize design and operation of dense medium cyclones in coal preparation. Miner. Eng. 2014, 62, 55–65. [Google Scholar] [CrossRef]
- Napier-Munn, T. The dense medium cyclone—Past, present and future. Miner. Eng. 2018, 116, 107–113. [Google Scholar] [CrossRef]
- Galvin, K.P.; Iveson, S.M. 10-Cleaning of coarse and small coal. In The Coal Handbook: Towards Cleaner Production; Osborne, D., Ed.; Woodhead Publishing: Cambridge, UK, 2013; Volume 1, pp. 263–300. [Google Scholar]
- Tripathy, A.; Panda, L.; Sahoo, A.K.; Biswal, S.K.; Dwari, R.K.; Sahu, A.K. Statistical optimization study of jigging process on beneficiation of fine size high ash Indian non-coking coal. Adv. Powder Technol. 2016, 27, 1219–1224. [Google Scholar] [CrossRef]
- Bu, X.; Xie, G.; Chen, Y.; Ni, C. The Order of Kinetic Models in Coal Fines Flotation. Int. J. Coal Prep. Util. 2017, 37, 113–123. [Google Scholar] [CrossRef]
- Bu, X.; Zhou, S.; Danstan, J.K.; Bilal, M.; Ul Hassan, F.; Chao, N. Prediction of coal flotation performance using a modified deep neural network model including three input parameters from feed. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 1–13. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Bu, X.; Wang, M.; An, B.; Shao, H.; Ni, C.; Peng, Y.; Xie, G. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles. Ultrason. Sonochem. 2020, 64, 105005. [Google Scholar] [CrossRef]
- Wang, X.; Bu, X.; Ni, C.; Zhou, S.; Yang, X.; Zhang, J.; Alheshibri, M.; Peng, Y.; Xie, G. Effect of scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite. Miner. Eng. 2021, 163, 106766. [Google Scholar] [CrossRef]
- Bu, X.; Zhang, T.; Peng, Y.; Xie, G.; Wu, E. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces. Minerals 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Niu, C.; Bu, X.; Bilal, M.; Ni, C.; Peng, Y. Enhancement of Flotation Performance of Oxidized Coal by the Mixture of Laurylamine Dipropylene Diamine and Kerosene. Minerals 2021, 11, 1271. [Google Scholar] [CrossRef]
- Randolph, J.M. Characterizing Flotation Response: A Theoretical and Experimental Comparison of Techniques. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1997. [Google Scholar]
- Xia, W.; Yang, J.; Liang, C. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technol. 2013, 237, 1–8. [Google Scholar] [CrossRef]
- Ni, C.; Bu, X.; Xia, W.; Liu, B.; Peng, Y.; Xie, G. Improving lignite flotation performance by enhancing the froth properties using polyoxyethylene sorbitan monostearate. Int. J. Miner. Process. 2016, 155, 99–105. [Google Scholar] [CrossRef]
- Mao, Y.; Bu, X.; Peng, Y.; Tian, F.; Xie, G. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 2020, 259, 116270. [Google Scholar] [CrossRef]
- Drzymala, J.; Ahmed, H.A.M. Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 2005, 76, 55–65. [Google Scholar] [CrossRef]
- Drzymala, J.; Kowalczuk, P.B.; Oteng-Peprah, M.; Foszcz, D.; Muszer, A.; Henc, T.; Luszczkiewicz, A. Application of the grade-recovery curve in the batch flotation of Polish copper ore. Miner. Eng. 2013, 49, 17–23. [Google Scholar] [CrossRef]
- Bu, X.; Zhang, T.; Chen, Y.; Xie, G.; Peng, Y. Comparative study of conventional cell and cyclonic microbubble flotation column for upgrading a difficult-to-float Chinese coking coal using statistical evaluation. Int. J. Coal Prep. Util. 2020, 40, 359–375. [Google Scholar] [CrossRef]
- Bu, X.; Zhang, T.; Chen, Y.; Peng, Y.; Xie, G.; Wu, E. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochem. Probl. Miner. Process. 2018, 54, 732–740. [Google Scholar] [CrossRef]
- Paul, S.R.; Bhattacharya, S. Size by Size Separation Characteristics of a Coal Cleaning Jig. Trans. Indian Inst. Met. 2018, 71, 1439–1444. [Google Scholar] [CrossRef]
- Chinese Standard GB/T, GBT, GB. Available online: www.ChineseStandard.net (accessed on 14 January 2022).
Coal Sample | Fluorine Content (μg/g) | Fluorine Occurrence Mode | Ref. |
---|---|---|---|
A coal sample from Guizhou Province, China | 357 | Fluorine mainly occurred in residual-associated form and carbonate- and Fe/Mn-associated form. | [15] |
<200 μg/g | Most of these coals are low fluorine (<200 μg/g); however, the fluorine content of clay is as high as 1027.6 μg/g. | [16] | |
715.20 (average) | The inorganic occurrence is the primary mode of occurrence of fluorine in coals from Guizhou province. | [17] | |
Haerwusu Surface Mine, Inner Mongolia, China | 286 | Boehmite and kaolinite are prime carriers of fluorine, but sometimes associated both with organic and inorganic matter. | [18,19] |
Xiangning mining area, Shanxi Province, China, China | 2–911 | Fluorine in coal mainly exists in an inorganic bound state in forms such as fluorapatite and calcium fluoride. | [20] |
Nantong coalfield, Chongqing Province, China | 490 (average) | Fluorine in coals from Nantong coalfield existed in the organic and inorganic minerals simultaneously. | [21] |
China coals | 67.3–3145.4 | Fluorine in coal mainly occurs in an inorganic form. | [22] |
Proximate Analysis (%) | Ultimate Analysis (%) | Fad (μg/g) | Qnet.ar (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCd | Cdaf | Hdaf | Odaf | Ndaf | St.d | ||
4.68 | 38.88 | 44.46 | 33.95 | 74.39 | 4.67 | 13.80 | 1.08 | 2.95 | 241 | 16.07 |
Ad (%) | Yield (%) | Fad (μg/g) | St.d (%) | Qnet.ar (MJ/kg) | δs (g/cm3) | ε±0.1 (%) | Degree of Washability |
---|---|---|---|---|---|---|---|
10.00 | 61.44 | 64.65 | 1.33 | 23.05 | 1.52 | 18.55 | Moderate separation |
11.00 | 64.70 | 69.00 | 1.37 | 22.73 | 1.59 | 11.04 | |
12.00 | 67.27 | 72.58 | 1.40 | 22.42 | 1.66 | 7.66 | Simple separation |
13.00 | 69.56 | 77.68 | 1.44 | 22.10 | 1.75 | 5.69 | |
14.00 | 71.18 | 83.39 | 1.46 | 21.80 | 1.80 | 5.31 | |
15.00 | 72.97 | 89.23 | 1.49 | 21.53 | 1.86 | 4.94 |
Ad (%) | Yield (%) | Fad (μg/g) | St.d (%) | Qnet.ar (MJ/kg) | Combustible Recovery (%) | Degree of Floatability |
---|---|---|---|---|---|---|
10.00 | 27.16 | 79.02 | 1.76 | 23.02 | 48.34 | Difficult-to-float |
11.00 | 28.37 | 84.54 | 1.76 | 22.72 | 49.93 | |
12.00 | 29.72 | 91.41 | 1.75 | 22.44 | 51.72 | |
13.00 | 30.93 | 97.06 | 1.74 | 22.15 | 53.21 | |
14.00 | 32.14 | 103.34 | 1.73 | 21.85 | 54.66 | |
15.00 | 33.36 | 108.82 | 1.73 | 21.56 | 56.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, C.; Zhou, S.; Bu, X.; Bilal, M.; Ul Hassan, F.; Chen, Y.; Xu, G.; Xie, G. Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study. Minerals 2022, 12, 280. https://doi.org/10.3390/min12030280
Ni C, Zhou S, Bu X, Bilal M, Ul Hassan F, Chen Y, Xu G, Xie G. Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study. Minerals. 2022; 12(3):280. https://doi.org/10.3390/min12030280
Chicago/Turabian StyleNi, Chao, Shaoqi Zhou, Xiangning Bu, Muhammad Bilal, Fawad Ul Hassan, Yuran Chen, Guangqian Xu, and Guangyuan Xie. 2022. "Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study" Minerals 12, no. 3: 280. https://doi.org/10.3390/min12030280
APA StyleNi, C., Zhou, S., Bu, X., Bilal, M., Ul Hassan, F., Chen, Y., Xu, G., & Xie, G. (2022). Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study. Minerals, 12(3), 280. https://doi.org/10.3390/min12030280