Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague
Abstract
:1. Introduction
2. Geological Setting of Study Area
3. Materials and Methods
3.1. Sampling of Road Dust and Airborne Particulate Matter
3.2. Elemental Characterization by INAA
3.3. Enrichment Factors
4. Results and Discussion
4.1. Analysis of Averaged Enrichment Factors
4.2. Principal Component Analysis
4.3. Enrichment Factor Progress
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: https://cs.wikipedia.org/wiki/Tunelový_komplex_Blanka (accessed on 15 February 2022).
- Available online: https://portal.cenia.cz/eiasea/download/RUlBX01aUDA5Ml9wb3N1ZGVrRE9DXzEucGRm/MZP092_posudek.pdf (accessed on 18 January 2022).
- Available online: http://www.tunelblanka.info/dopady-projektu/imise/mereni-imisi-v-holesovickach/ (accessed on 18 January 2022).
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=CS (accessed on 18 January 2022).
- Available online: https://www.tsk-praha.cz/wps/portal/root/dopravni-inzenyrstvi/blanka/ (accessed on 18 January 2022).
- Krzyzanowski, M.; Kuna-Dibbert, B.; Schneider, J. (Eds.) Health Effects of Transport-Related Air Pollution; WHO Regional Office for Europe: Copenhagen, Denmark, 2005; Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/74715/E86650.pdf (accessed on 23 February 2022).
- Gardner, C.B.; Long, D.T.; Lyons, W.B. Urban Geochemistry. Appl. Geochem. 2017, 83, 1–2. [Google Scholar] [CrossRef]
- Available online: https://mapy.geology.cz/geocr50/?center=-738600%2C-1040800%2C102067&level=8 (accessed on 15 February 2022).
- Chlupáč, I. Geology of the Barrandian. A Field Trip Guide; Senckenberg Bücher, Nr. 69; Verlag Waldemar Kramer: Frankfurt am Main, Germany, 1993; 165p, ISBN 978-3-510-61276-5. [Google Scholar]
- Vacek, F.; Žák, J. A lifetime of the Variscan orogenic plateau from uplift to collapse as recorded by the Prague Basin, Bohemian Massif. Geol. Mag. 2019, 156, 485–509. [Google Scholar] [CrossRef]
- Žitnik, M.; Budnar, M.; Ravnikar, K.; Urši, M.; Grlj, N.; Jakomin, M.; Rupnik, Z.; Pelicon, P. Estimation of possible airborne elemental inputs to the Slovenian marine environment. J. Radioanal. Nucl. Chem. 2008, 275, 17–28. [Google Scholar] [CrossRef]
- Řanda, Z.; Frána, J.; Mizera, J.; Kučera, J.; Novák, J.K.; Ulrych, J.; Belov, A.G.; Maslov, O.D. Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand. Geoanal. Res. 2007, 31, 275–283. [Google Scholar] [CrossRef]
- Mizera, J.; Řanda, Z. Instrumental neutron and photon activation analyses of selected geochemical reference materials. J. Radioanal. Nucl. Chem. 2010, 284, 157–163. [Google Scholar] [CrossRef]
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B Atomic Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Available online: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html (accessed on 18 January 2022).
- Rudnick, R.L.; Gao, S. The Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
- Kłos, A.; Rajfur, M.; Wacławek, M. Application of enrichment factor (EF) to the interpretation of results from the biomonitoring studies. Ecol. Chem. Eng. S 2011, 18, 171–183. [Google Scholar]
- Thomas, V.M.; Bedford, J.A.; Cicerone, R.J. Bromine emissions from leaded gasoline. Geophys. Res. Lett. 1997, 24, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Lammel, G.; Röhr, A.; Schreiber, H. Atmospheric lead and bromine in Germany: Post-abatement levels, variabilities and trends. Environ. Sci. Pollut. Res. 2002, 9, 397–404. [Google Scholar] [CrossRef]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef]
- Lönnermark, A.; Blomqvist, P. Emissions from Tyre Fires; SP Report 2005:43; SP Swedish National Testing and Research Institute: Borås, Sweden, 2005; Available online: http://www.diva-portal.org/smash/get/diva2:962334/FULLTEXT01.pdf (accessed on 18 January 2022).
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Wen, H.; Carignan, J. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 2007, 41, 7151–7165. [Google Scholar] [CrossRef]
- Won, J.H.; Park, J.Y.; Lee, T.G. Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmos. Environ. 2007, 41, 7547–7552. [Google Scholar] [CrossRef]
- McKenzie, E.R.; Money, J.E.; Green, P.G.; Young, T.M. Metals associated with stormwater-relevant brake and tire samples. Sci. Total Environ. 2009, 407, 5855–5860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Gao, Y. Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U.S. east coast. Atmos. Pollut. Res. 2011, 2, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, Y.; Zhang, M. Mercury and cadmium contamination in traffic soil of Beijing, China. Bull. Environ. Contam. Toxicol. 2012, 88, 154–157. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, F.; Covaci, A.; Wu, M.; Wang, H.; Yu, G.; Wang, B.; Deng, S.; Huang, J.; Wang, X. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ. Sci. Technol. 2014, 48, 8839–8846. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [Green Version]
- Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ocampo, A.; Torres-Pérez, J.; Jiménez-Reyes, M. Selenium levels in the serum of workers at a rubber tire repair shop. Am. Ind. Hyg. Assoc. J. 2010, 57, 72–75. [Google Scholar] [CrossRef]
- Quinn, C.F.; Prins, C.N.; Freeman, J.L.; Gross, A.M.; Hantzis, L.J.; Reynolds, R.J.; Yang, S.I.; Covey, P.A.; Bañuelos, G.S.; Pickering, I.J.; et al. Selenium accumulation in flowers and its effects on pollination. New Phytol. 2011, 192, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Yates, S.R. Production of methyl bromide by terrestrial higher plants. Geophys. Res. Lett. 1998, 25, 3595–3598. [Google Scholar] [CrossRef]
- Parviainen, A.; Loukola-Ruskeeniemi, K. Environmental impact of mineralised black shales. Earth-Sci. Rev. 2019, 192, 65–90. [Google Scholar] [CrossRef]
Analyte Nuclide (Target Element) | Analytical Photopeak (keV) [12,15] | Half-Life [12,15] | Calibrator No. (Element Mass in μg) | QC (Determined Value to Reference Value) | |
---|---|---|---|---|---|
NIST RM 8704 | NIST SRM 2711 | ||||
Fe-59 | 1291.6 | 44.5 d | 1 (740) | 1.01 | 0.97 |
Na-24 | 1368.6 | 14.7 h | 2 (21) | 1.05 | 0.93 |
K-42 | 1524.6 | 12.4 h | 2 (250) | 0.96 | 0.90 |
Sc-46 | 1120.5 | 83.8 d | 3 (0.028) | 1.14 | 1.02 |
Cr-51 | 320.1 | 27.7 d | 3 (3.3) | 1.10 | 0.95 |
Co-60 | 1332.5 | 5.27 y | 3 (1.0) | 0.98 | 0.94 |
Zn-65 | 1115.5 | 244 d | 1 (99) | 0.91 | 0.95 |
Mo-99 | 140.5 | 65.9 h | 4 (25) | 0.61 | not determined |
Hg-203 | 279.2 | 46.6 d | 5 (6.7) | not determined | not determined |
As-76 | 559.1 | 1.10 d | 1 (1.0) | 1.07 | 1.04 |
Se-75 | 264.7 | 120 d | 1 (10) | nd | 0.92 |
Br-82 | 776.5 | 1.47 d | 2 (2.7) | 1.00 | 0.90 |
Rb-86 | 1076.7 | 18.7 d | 3 (15) | 1.04 | not determined |
Sb-122 | 564.2 | 2.72 d | 5 (1.0) | 0.92 | 0.97 |
Cs-134 | 795.9 | 2.06 y | 3 (0.77) | 1.08 | 1.01 |
Ba-131 | 496.3 | 11.8 d | 2 (25) | 1.01 | 0.91 |
La-140 | 1596.5 | 1.68 d | 6 (0.41) | 1.00 | 0.92 |
Ce-141 | 145.4 | 32.5 d | 7 (4.0) | 0.87 | 0.92 |
Nd-147 | 91.1 | 11.0 d | 7 (10) | 1.02 | not determined |
Sm-153 | 103.2 | 1.95 d | 6 (0.13) | 0.93 | 0.89 |
Eu-152 | 1408 | 13.3 y | 6 (0.16) | 1.07 | 0.96 |
Tb-160 | 879.4 | 72.3 d | 6 (0.24) | 1.12 | not determined |
Yb-175 | 396.3 | 4.19 d | 6 (0.68) | 0.88 | not determined |
Hf-181 | 482.0 | 42.4 d | 3 (0.19) | 1.22 | 1.08 |
Ta-182 | 1221.4 | 115 d | 8 (0.34) | 0.90 | not determined |
W-187 | 685.8 | 24.0 h | 4 (3.0) | not determined | 1.10 |
Pa-233 (Th) | 312.0 | 27.0 d | 3 (0.29) | 1.00 | 0.91 |
Np-239 (U) | 106.1 | 2.36 d | 8 (2.2) | 1.09 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizera, J.; Havelcová, M.; Machovič, V.; Borecká, L.; Vöröš, D. Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague. Minerals 2022, 12, 281. https://doi.org/10.3390/min12030281
Mizera J, Havelcová M, Machovič V, Borecká L, Vöröš D. Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague. Minerals. 2022; 12(3):281. https://doi.org/10.3390/min12030281
Chicago/Turabian StyleMizera, Jiří, Martina Havelcová, Vladimír Machovič, Lenka Borecká, and Dominik Vöröš. 2022. "Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague" Minerals 12, no. 3: 281. https://doi.org/10.3390/min12030281
APA StyleMizera, J., Havelcová, M., Machovič, V., Borecká, L., & Vöröš, D. (2022). Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague. Minerals, 12(3), 281. https://doi.org/10.3390/min12030281