An Evaluation of Three Halogens (Cl, Br, and I) Data from a Geological Survey of Japan Geochemical Reference Materials by Radiochemical Neutron Activation Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carriers and Calibrators
2.2. Geochemical Reference Materials
2.3. Methods
2.3.1. INAA
2.3.2. RNAA
3. Results and Discussion
3.1. INAA
3.2. RNAA
3.2.1. Comparison with INAA Data
3.2.2. JR-3
3.2.3. Comparisons with Other Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harlov, D.E.; Aranovich, L. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface Crust, and Mantle, 1st ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Broadley, M.W.; Ballentine, C.J.; Chavrit, D.; Dallai, L.; Burgess, R. Sedimentary halogen and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle. Geochim. Cosmochim. Acta 2016, 176, 139–156. [Google Scholar] [CrossRef]
- Villemant, B.; Boudon, G. Transition from dome-forming to Plinian eruptive styles controlled by H2O and Cl degassing. Nature 1998, 392, 65–69. [Google Scholar] [CrossRef]
- Muramatsu, Y.; Fehn, U.; Yoshida, S. Recycling of iodine in fore-arc areas: Evidence from the iodine brines in Chiba, Japan. Earth Planet. Sci. Lett. 2001, 192, 583–593. [Google Scholar] [CrossRef]
- Shinonaga, T.; Ebihara, M.; Nakahara, H.; Tomura, K.; Heumann, K.G. Cl, Br and I in igneous standard rocks. Chem. Geol. 1994, 115, 213–225. [Google Scholar] [CrossRef]
- Korotev, R.L. A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand. Newslett. 1996, 20, 217–245. [Google Scholar] [CrossRef]
- Ebihara, M.; Ozaki, H.; Kato, F.; Nakahara, H. Determination of chlorine, bromine and iodine in rock samples by radiochemical neutron activation analysis. J. Radioanal. Nucl. Chem. 1997, 216, 107–112. [Google Scholar] [CrossRef]
- Sano, T.; Fukuoka, T.; Hasenaka, T. Determination of chlorine contents in Geological Survey of Japan reference materials by prompt gamma neutron activation analysis. Geostand. Geoanal. Res. 2004, 28, 443–448. [Google Scholar] [CrossRef]
- Ozaki, H.; Ebihara, M. Determination of trace halogens in rock samples by radiochemical neutron activation analysis coupled with the k0-standardization method. Anal. Chim. Acta 2007, 583, 384–391. [Google Scholar] [CrossRef]
- Sekimoto, S.; Ebihara, M. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data. Anal. Chem. 2013, 85, 6336–6341. [Google Scholar] [CrossRef]
- Schnetger, B.; Muramatsu, Y. Determination of halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 1996, 121, 1627–1631. [Google Scholar] [CrossRef]
- Shimizu, K.; Itai, T.; Kusakabe, M. Ion chromatographic determination of fluorine and chlorine in silicate rocks following alkaline fusion. Geostand. Geoanal. Res. 2007, 30, 121–129. [Google Scholar] [CrossRef]
- Wang, Q.; Makishima, A.; Nakamura, E. Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: Comparison with alkaline fusion digestion and ion chromatography. Geostand. Geoanal. Res. 2010, 34, 175–183. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, N. Determination of chlorine in nine rock reference materials by isotope dilution mass spectrometry. Geostand. Geoanal. Res. 2006, 30, 113–120. [Google Scholar] [CrossRef]
- Schnetger, B.; Muramatsu, Y.; Yoshida, S. Iodine (and other halogens) in twenty six geological reference materials by ICP-MS and ion chromatography. Geostand. Newslett. 1998, 22, 181–186. [Google Scholar] [CrossRef]
- Chai, J.Y.; Muramatsu, Y. Determination of bromine and iodine in twenty-three geochemical reference materials by ICP-MS. Geostand. Geoanal. Res. 2007, 31, 143–150. [Google Scholar] [CrossRef]
- Kendrick, M.A. High precision Cl, Br and I determination in mineral standards using the noble gas method. Chem. Geol. 2012, 292–293, 116–126. [Google Scholar] [CrossRef]
- Kendrick, M.A.; D’Andres, J.; Hoolden, P.; Ireland, T. Halogens (F, Cl, Br, I) in thirteen USGS, GSJ and NIST international rock and glass reference materials. Geostand. Geoanal. Res. 2018, 42, 499–511. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Kendrich, M.A.; Eby, G.N.; Zack, T.; Wenzel, T. The F, Cl, Br and I contents of reference glasses BHVO-2G, BIR-1G, BCR-2G, GSD-1G, GSE-1G, NIST SRM 610 and NIST SRM 612. Geostand. Geoanal. Res. 2017, 41, 107–122. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sumino, H.; Saito, T.; Nagao, K. Determination of halogens in geological reference materials using neutron irradiation noble gas mass spectrometry. Chem. Geol. 2021, 582, 120420. [Google Scholar] [CrossRef]
- Ebihara, M.; Shirai, N.; Sekimoto, S. Redetermination of mass fractions of three halogens (Cl, Br, I) for seventeen USGS geochemical reference materials. Geostand. Geoanal. Res. 2023, 47, 931–944. [Google Scholar] [CrossRef]
- Sekimoto, S.; Homura, Y.; Ho, V.D.; Inagaki, M.; Shirai, N.; Ohtsuki, T. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 2019, 322, 1579–1583. [Google Scholar] [CrossRef]
- Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1996 compilation of analytical data on nine GSJ geochemical reference samples, “sedimentary rock series”. Geostand. Newslett. 1996, 20, 165–216. [Google Scholar] [CrossRef]
- Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1994 compilation of analytical data from minor and trace elements in seventeen GSJ geochemical reference samples, “Igneous rock series”. Geostand. Newslett. 1995, 19, 135–213. [Google Scholar] [CrossRef]
- Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1998 compilation of analytical data for five GSJ geochemical reference samples: The “Instrumental Analysis series”. Geostand. Newslett. 1999, 23, 223–250. [Google Scholar] [CrossRef]
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Nakamoto, T.; Oura, Y.; Ebihara, M. Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples. Anal. Sci. 2007, 23, 1113–1119. [Google Scholar] [CrossRef]
- Shimizu, K.; Suzuki, K.; Saitoh, M.; Konno, U.; Kawagucci, S.; Ueno, Y. Simultaneous determinations of fluorine, chlorine, and sulfur in rock samples by ion chromatography combined with pyrohydrolysis. Geochem. J. 2015, 49, 113–124. [Google Scholar] [CrossRef]
Sample | Rock | Applied Method * | |
---|---|---|---|
Name | Type | INAA | RNAA |
Igneous rock | |||
JA-1 | Andesite | ◯ | |
JB-2a | Basalt | ◯ | |
JB-3a | Basalt | ◯ | |
JF-2 | Feldspar | ◯ | |
JG-3 | Granodiorite | ◯ | |
JGb-1 | Gabbro | ◯ | |
JH-1 | Hornblendite | ◯ | |
JP-1 | Peridotite | ◯ | |
JR-3 | Rhyolite | ◯ | |
Sedimentary rock | |||
JCp-1 | Coral | ◯ | ◯ |
JCt-1 | Fossil shell | ◯ | |
JDo-1 | Dolomite | ◯ | |
JLs-1 | Limestone | ◯ | |
Sediment | |||
JLk-1 | Lake sediment | ◯ | |
Soil | |||
JSO-1 | Soil | ◯ | ◯ |
Sample | Source | Method | Cl | Br | I * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Mass (mg) | |||||||||||
JCp-1 | 70.7 | This work (individual) | INAA | 620 | ± | 20 | 2.86 | ± | 0.12 | 5.93 | ± | 0.50 |
66.9 | This work (individual) | INAA | 629 | ± | 23 | 3.12 | ± | 0.31 | 5.23 | ± | 0.51 | |
This work (mean) ** | INAA (n = 2) | 625 | ± | 8 | 2.99 | ± | 0.23 | 5.58 | ± | 0.62 | ||
Chai and Muramatsu [16] | ICP-MS (n = 5) | 3.25 | ± | 0.07 | 5.5 | ± | 0.2 | |||||
Sekimoto et al. [22] | RNAA | 620 | 3.22 | 6.14 | ||||||||
JSO-1 | 31.1 | This work (individual) | INAA | 164 | ± | 35 | 95.0 | ± | 2.3 | 21.0 | ± | 4.2 |
25.9 | This work (individual) | INAA | 184 | ± | 4 | 95.6 | ± | 2.3 | 24.3 | ± | 2.8 | |
This work (mean) | INAA (n = 2) | 174 | ± | 18 | 95.3 | ± | 0.5 | 22.7 | ± | 2.9 | ||
Chai and Muramatsu [16] | ICP-MS (n = 4) | 98 | ± | 2 | 26.9 | ± | 0.2 | |||||
JDo-1 | 72.9 | This work (individual) | INAA | 40.5 | ± | 4.3 | 0.572 | ± | 0.068 | <1.7 † | ||
Imai et al. [23] | preferable value | 0.79 | ||||||||||
Chai and Muramatsu [16] | ICP-MS (n = 6) | 0.53 | ± | 0.02 | 0.71 | ± | 0.06 | |||||
Sekimoto and Ebihara [10] | RNAA (n = 3) | 35.9 | ± | 5.0 | 0.622 | ± | 0.051 | 0.789 | ± | 0.039 | ||
JLk-1 | 26.1 | This work (individual) | INAA | <120 | 8.29 | ± | 1.72 | 11.9 | ± | 4.4 | ||
Imai et al. [23] | preferable value | 8.7 | 25 | |||||||||
Chai and Muramatsu [16] | ICP-MS (n = 4) | 8.0 | ± | 0.3 | 9.4 | ± | 0.1 | |||||
Sekimoto and Ebihara [10] | RNAA (n = 3) | 59.1 | ± | 1.8 | 7.82 | ± | 0.53 | 9.05 | ± | 0.62 | ||
JLs-1 | 84.5 | This work (individual) | INAA | 14.2 | ± | 2.5 | 0.167 | ± | 0.008 | <0.62 | ||
Chai and Muramatsu [16] | ICP-MS (n = 10) | 0.068 | ± | 0.007 | 0.260 | ± | 0.020 | |||||
Sekimoto and Ebihara [10] | RNAA (n = 3) | 16.4 | ± | 1.4 | 0.105 | ± | 0.012 | 0.318 | ± | 0.028 |
Sample | Source | Method | Cl | Br | I * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Mass (mg) | |||||||||||
JA-1 | 231.0 | This work (individual) | RNAA | 44.9 | ± | 2.0 | 0.108 | ± | 0.004 | 0.0181 | ± | 0.0041 |
316.9 | This work (individual) | RNAA | 43.0 | ± | 3.0 | 0.116 | ± | 0.005 | 0.0198 | ± | 0.0050 | |
This work (mean) ** | RNAA (n = 2) | 43.9 | ± | 1.7 | 0.112 | ± | 0.007 | 0.0189 | ± | 0.0015 | ||
Imai et al. [24] | recommended value | 43.0 | ||||||||||
Imai et al. [24] | preferable value | 0.015 | ||||||||||
JB-2a | 323.2 | This work (individual) | RNAA | 320 | ± | 1 | 0.627 | ± | 0.004 | 0.0469 | ± | 0.0100 |
279.5 | This work (individual) | RNAA | 296 | ± | 4 | 0.641 | ± | 0.007 | 0.0393 | ± | 0.0087 | |
This work (mean) | RNAA (n = 2) | 308 | ± | 21 | 0.634 | ± | 0.012 | 0.0431 | ± | 0.0068 | ||
JB-2 | Imai et al. [24] | recommended value | 281 | |||||||||
Imai et al. [24] | preferable value | 0.049 | ||||||||||
JB-3a | 356.8 | This work (individual) | RNAA | 334 | ± | 4 | 0.679 | ± | 0.037 | 0.0362 | ± | 0.0077 |
278.2 | This work (individual) | RNAA | 296 | ± | 12 | 0.640 | ± | 0.008 | 0.0242 | ± | 0.0053 | |
This work (mean) | RNAA (n = 2) | 315 | ± | 34 | 0.659 | ± | 0.035 | 0.0302 | ± | 0.0106 | ||
JB-3 | Imai et al. [24] | preferable value | 259 | 0.028 | ||||||||
JF-2 | 300.8 | This work (individual) | RNAA | 32.8 | ± | 0.5 | 0.108 | ± | 0.010 | 0.0398 | ± | 0.0084 |
358.6 | This work (individual) | RNAA | 36.3 | ± | 1.2 | 0.106 | ± | 0.006 | 0.0424 | ± | 0.0087 | |
This work (mean) | RNAA (n = 2) | 34.6 | ± | 3 | 0.107 | ± | 0.002 | 0.0411 | ± | 0.0023 | ||
JG-3 | 293.0 | This work (individual) | RNAA | 180 | ± | 4 | 0.112 | ± | 0.003 | 0.0121 | ± | 0.0028 |
298.4 | This work (individual) | RNAA | 176 | ± | 11 | 0.197 | ± | 0.015 | 0.0130 | ± | 0.0035 | |
This work (mean) | RNAA (n = 2) | 178 | ± | 3 | 0.154 | ± | 0.075 | 0.0125 | ± | 0.0008 | ||
Imai et al. [24] | preferable value | 156 | ||||||||||
JGb-1 | 346.4 | This work (individual) | RNAA | 1760 | ± | 50 †† | 0.150 | ± | 0.015 | 0.197 | ± | 0.041 |
332.8 | This work (individual) | RNAA | 60.3 | ± | 2.1 | 0.0601 | ± | 0.0044 | 0.0985 | ± | 0.0201 | |
This work (mean) | RNAA (n = 2) | 60.3 | ± | 0.2 | 0.0601 | ± | 0.0044 | 0.148 | ± | 0.087 | ||
Imai et al. [24] | preferable value | 81 | ||||||||||
JH-1 | 302.9 | This work (individual) | RNAA | 258 | ± | 13 | 0.126 | ± | 0.007 | 0.0498 | ± | 0.0144 |
318.3 | This work (individual) | RNAA | 155 | ± | 3 | 0.0832 | ± | 0.0008 | 0.0237 | ± | 0.0065 | |
This work (mean) | RNAA (n = 2) | 207 | ± | 91 | 0.0832 | ± | 0.0008 | 0.0368 | ± | 0.0231 | ||
Imai et al. [25] | compilation value | 2.20 | ||||||||||
JP-1 | 255.0 | This work (individual) | RNAA | 77.2 | ± | 2.9 | 0.279 | ± | 0.001 | 0.0929 | ± | 0.0202 |
272.1 | This work (individual) | RNAA | 93.0 | ± | 0.7 | 0.272 | ± | 0.026 | 0.114 | ± | 0.023 | |
This work (mean) | RNAA (n = 2) | 85.1 | ± | 14.0 | 0.279 | ± | 0.001 | 0.104 | ± | 0.019 | ||
Imai et al. [24] | preferable value | 97 | ||||||||||
JR-3 | 102.7 | This work (individual) | RNAA | 127 | ± | 2 | 0.469 | ± | 0.012 | 0.400 | ± | 0.079 |
109.8 | This work (individual) | RNAA | 150 | ± | 16 | 0.565 | ± | 0.033 | 0.468 | ± | 0.092 | |
259.8 | This work (individual) | RNAA | 122 | ± | 3 | 0.459 | ± | 0.021 | 0.480 | ± | 0.095 | |
250.6 | This work (individual) | RNAA | 140 | ± | 5 | 0.537 | ± | 0.004 | 0.573 | ± | 0.112 | |
116.3 | This work (individual) | RNAA | 120 | ± | 2 | 0.478 | ± | 0.018 | 0.379 | ± | 0.076 | |
185.9 | This work (individual) | RNAA | 128 | ± | 3 | 0.486 | ± | 0.010 | 0.348 | ± | 0.071 | |
100.1 | This work (individual) | RNAA | 111 | ± | 13 | 0.423 | ± | 0.002 | 0.372 | ± | 0.083 | |
95.5 | This work (individual) | RNAA | 150 | ± | 7 | 0.542 | ± | 0.037 | 0.304 | ± | 0.066 | |
206.8 | This work (individual) | RNAA | 129 | ± | 8 | 0.520 | ± | 0.065 | 0.350 | ± | 0.069 | |
202.8 | This work (individual) | RNAA | 143 | ± | 8 | 0.564 | ± | 0.042 | 0.408 | ± | 0.089 | |
222.9 | This work (individual) | RNAA | 202 | ± | 7 | 0.618 | ± | 0.005 | 0.485 | ± | 0.095 | |
This work (mean) † | RNAA (n = 11) | 138 | ± | 24 | 0.515 | ± | 0.057 | 0.415 | ± | 0.078 | ||
Imai et al. [25] | compilation value | 3 | ||||||||||
JCp-1 | 119.5 | This work (individual) | RNAA | 824 | ± | 5 | 4.19 | ± | 0.18 | 6.32 | ± | 1.23 |
This work (mean) § | INAA (n = 2) | 625 | ± | 8 | 2.99 | ± | 0.23 | 5.58 | ± | 0.62 | ||
JCt-1 | 316.8 | This work (individual) | RNAA | 128 | ± | 17 | 0.251 | ± | 0.004 | 0.0360 | ± | 0.0079 |
330.7 | This work (individual) | RNAA | 97.5 | ± | 2.2 | 0.216 | ± | 0.012 | 0.0258 | ± | 0.0054 | |
This work (mean) | RNAA (n = 2) | 113 | ± | 27 | 0.233 | ± | 0.032 | 0.0309 | ± | 0.0090 | ||
JSO-1 | 39.1 | This work (individual) | RNAA | 162 | ± | 5 | 98.8 | ± | 4.7 | 23.4 | ± | 4.5 |
This work (mean) | INAA (n = 2) | 174 | ± | 18 | 95.3 | ± | 0.5 | 22.7 | ± | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirai, N.; Sekimoto, S.; Ebihara, M. An Evaluation of Three Halogens (Cl, Br, and I) Data from a Geological Survey of Japan Geochemical Reference Materials by Radiochemical Neutron Activation Analysis. Minerals 2024, 14, 213. https://doi.org/10.3390/min14030213
Shirai N, Sekimoto S, Ebihara M. An Evaluation of Three Halogens (Cl, Br, and I) Data from a Geological Survey of Japan Geochemical Reference Materials by Radiochemical Neutron Activation Analysis. Minerals. 2024; 14(3):213. https://doi.org/10.3390/min14030213
Chicago/Turabian StyleShirai, Naoki, Shun Sekimoto, and Mitsuru Ebihara. 2024. "An Evaluation of Three Halogens (Cl, Br, and I) Data from a Geological Survey of Japan Geochemical Reference Materials by Radiochemical Neutron Activation Analysis" Minerals 14, no. 3: 213. https://doi.org/10.3390/min14030213
APA StyleShirai, N., Sekimoto, S., & Ebihara, M. (2024). An Evaluation of Three Halogens (Cl, Br, and I) Data from a Geological Survey of Japan Geochemical Reference Materials by Radiochemical Neutron Activation Analysis. Minerals, 14(3), 213. https://doi.org/10.3390/min14030213