Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China
Abstract
:1. Introduction
2. Geology Characteristics
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
4. Analysis Results
5. Discussion
5.1. Characteristics of Fe and S in Pyrite
5.2. Characteristics of Co and Ni in Pyrite
5.3. Gold Occurrence
5.4. Gold Mineralization
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Liu, G.S.; Niu, M.L.; Xie, C.L.; Wang, Y.S.; Xiang, B.W. Syn-collisional transform faulting of the Tan-Lu Fault zone, East China. Int. J. Earth Sci. 2009, 98, 135–155. [Google Scholar] [CrossRef]
- Zhai, M.; Li, T.S.; Peng, P. Precambrian key tectonic events and evolution of the North China craton. Geol. Soc. Lond. Spec. Publ. 2010, 338, 235–262. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, C.; Gu, C.; Zhang, S.; Li, Y.; Su, N.; Xiao, S.Y. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu fault zone. China Earth Sci. 2018, 61, 386–405. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, P.; Zhang, Y.Q. An Early Cretaceous gold metallogenesis in the Wuhe area, Eastern Anhui province: Constraints from geology, fluid inclusion, H-O isotope and geochronology on the Hekou gold deposit. Ore Geol. Rev. 2021, 138, 104319. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.; Wang, A.G. Petrogenesis of Cretaceous granitoids in the Bengbu–Wuhe area, southeastern North China Craton: Implications for gold mineralization. Ore Geol. Rev. 2020, 126, 103740. [Google Scholar] [CrossRef]
- Wang, A.D.; Liu, Y.C.; Gu, X.F. Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications. Precambrian Res. 2012, 220, 65–79. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 2017, 50, 267–292. [Google Scholar] [CrossRef]
- Yang, Z.; Deng, Y.F.; Yuan, F.; Li, Y.; Lin, T.; Zhang, S.L.; Zhang, J.J. Ore source and ore-forming age of Hekou and Rongdu Au deposit in Wuhe area, Bengbu city. Acta Petrol. Sin. 2019, 35, 3875–3893, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z. Metallogenic Geological Characteristics and Genesis of Gold Polymetallic Deposits in Bengbu Wuhe Area, Anhui Province. Master’s Thesis, Hefei University of Technology, Hefei, China, 2020. [Google Scholar]
- Shi, K.; Yang, X.Y.; Du, J.G. Geochemistry and Geochronology of Intermediate Rocks in the Jiangshan Au Deposit in the Bengbu Uplift, North Anhui Province: Clues to Regional Au Mineralization. Acta Geol. Sin. 2020, 94, 1909–1920. [Google Scholar] [CrossRef]
- Hu, H.F.; Xu, X.C.; Chen, F.; Xu, W. A comparison of metallogenic geological conditions of gold deposits between the Bengbu-Wuhe area in Anhui and Eastern Shandong Province. Geology 2015, 39, 187–193, (In Chinese with English Abstract). [Google Scholar]
- Wan, J.; Wang, A.; Pan, J. Episodic crustal growth and reworking at the southeastern margin of the North China Craton: Evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area. Acta Geochim. 2021, 40, 366–389. [Google Scholar] [CrossRef]
- Li, C.; Yan, J.; Yang, C.; Song, C.Z.; Wang, A.G.; Zhang, D.Y. Generation of leucogranites via fractional crystallization: A case study of the Jurassic Bengbu granite in the southeastern North China Craton. Lithos 2020, 352–353, 105271. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wang, Q.S.; Zhang, J.J.; Zhu, Y.K. Comparative study of geology for the gold formations in the Wuhe, Jiaodong and Xiaoqingling areas. Anhui Geol. 2017, 27, 90–94, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.J.; Zhang, S.L.; Zhu, Y.K. Metallogenic geological conditions and metallogenic model of the Hekou Pb-Au deposit in the Wuhe area, Anhui Province. J. Geol. 2019, 1, 57–66. [Google Scholar]
- Kang, C.X.; Yang, X.Z.; Cai, Y.T. Geological and geochemical characteristics of Middle Jurassic granites in Bengbu uplift, Southeast of North China craton. Acta Geol. Sin. 2017, 91, 83–85. [Google Scholar]
- Yang, D.B.; Xu, W.L.; Wang, Q.H.; Pei, F.P.; Ji, W.Q. Petrogenesis of Late Jurassic Jingshan granite in Bengbu Uplift, Anhui province: Constraints from geochemistry and Hf isotope of zircons. Acta Petrol. Sin. 2006, 22, 2923–2932. [Google Scholar]
- Yang, D.B.; Xu, W.L.; Pei, F.P.; Wang, Q.H.; Liu, X.M. Formation time and magma source of granites in Bengbu Uplift, Evidence from LA-ICPMS zircon U-Pb dating and tracing. Geochimica 2005, 34, 443–454, (In Chinese with English Abstract). [Google Scholar]
- Yang, D.B.; Xu, W.L.; Wang, Q.H.; Pei, F.P. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution of the eastern North China Craton. Lithos 2010, 114, 200–216. [Google Scholar] [CrossRef]
- Wang, A.D.; Liu, Y.C.; Gu, X.F.; Li, S.G.; Xie, H.Q. Zircon SHRIMP U-Pb dating for garnet-bearing gneissic granite at Laoshan, Bengbu: Implications for recycling of the subducted continental crust of the South China Block. J. Mineral. Petrol. 2009, 29, 38–43. [Google Scholar]
- Fu, X.; Zhang, D.; Yao, Z. Geochronology and Petrogenesis of Granitoid Intrusions in the Feidong District, Southern Tan–Lu Fault Zone, China. Acta Geol. Sin. 2020, 94, 1960–1976. [Google Scholar]
- Liu, Y.C.; Zhang, P.G.; Wang, C.C.; Groppo, C.; Rolfo, F.; Yang, Y.; Li, Y.; Deng, L.P.; Song, B. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the NorthChina Craton. Lithos 2017, 290, 189–209. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhao, G.C.; Liu, F.L.; Cai, J. The southwestern extension of the Jiao-Liao-Ji belt in the North China Craton: Geochronological and geochemical evidence from the Wuhe Group in the Bengbu area. Lithos 2018, 304, 258–279. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.S.; Niu, M.L.; Xie, C.L.; Li, C.C. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. J. Struct. Geol. 2005, 27, 1379–1398. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, T.F.; White, N.C.; Zhang, L.J.; Fan, Y.; Wang, F.Y.; Chen, X.F. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China. Lithos 2018, 302–303, 467–479. [Google Scholar] [CrossRef]
- Chen, G.Y.; Shao, W.; Sun, D.S. Mineralogy and Mineralization of Gold Ore Genesis in Jiaodong; Chong Qing Publish Company: Chongqing, China, 1989. [Google Scholar]
- Chen, Y.; Fan, Y.; Zhou, T.F. Pyrite textures and compositions in Jiangshan gold deposit, Bengbu Uplift, southeastern North China Craton: Implications for ore genesis. Ore Geol. Rev. 2020, 122, 103512. [Google Scholar] [CrossRef]
- Batanova, V.G.; Sobolev, A.V.; Magnin, V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 304, p. 012001. [Google Scholar]
- Hetherington, C.J.; Jercinovic, M.J.; Williams, M.L. Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis. Chem. Geol. 2008, 254, 133–147. [Google Scholar] [CrossRef]
- Xu, K.Q.; Ni, P. Important Geological Factors Controlling the Formation of Gold Deposits in East China. Chin. J. Geochem. 1997, 16, 1–7. [Google Scholar]
- Li, H.B.; Zeng, F.Z. The pyrite’s typomorphic characteristics in gold deposit. Contrib. Geol. Miner. Resour. Res. 2005, 20, 199–203, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.T.; Li, S.R.; Jia, B.J. Composition typomorphic characteristics of pyrite in various genetic type gold deposits. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 463, pp. 25–29. [Google Scholar]
- Li, H.L.; Li, G.M. Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits. Earth Sci. Front. 2019, 26, 202. [Google Scholar]
- Gong, L.; Ma, G. The characteristic typomorphic composition of pyrite and its indicative meaning to metal deposits. Contrib. Geol. Miner. Resour. Res. 2011, 26, 162–166, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y.T.; Li, S.R.; Jia, B.J. A new method to quantify morphology of pyrite, and application to magmatic-hydrothermal gold deposits in Jiaodong Peninsula, China. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2012; Volume 446, pp. 2015–2027. [Google Scholar]
- Reich, M.; Kesler, S.E.; Utsunomiya, S. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Tooth, B.; Ciobanu, C.L.; Green, L.; O’Neill, B.; Brugger, J. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochim. Cosmochimca Acta 2011, 75, 5423–5443. [Google Scholar] [CrossRef]
- Ridley, J.R.; Diamond, L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol. 2000, 13, 141–162. [Google Scholar]
- Kolb, J.; Rogers, A.; Meyer, F.M. Relative timing of deformation and two-stage gold mineralization at the Hutti Mine, Dharwar Craton, India. Min. Depos. 2005, 40, 156–174. [Google Scholar] [CrossRef]
- Fougerouse, D.; Micklethwaite, S.; Ulrich, S.; Miller, J.; Godel, B.; Adams, D.T.; McCuaig, T.C. Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana. Econ. Geol. 2017, 112, 3–22. [Google Scholar] [CrossRef]
- Gourcerol, B.; Kontak, D.J.; Thurston, P.C.; Petrus, J.A. Application of LA-ICP-MS sulfide analysis and methodology to deciphering elemental paragenesis and associations in addition to multistage processes in metamorphic gold settings. Can. Mineral. 2018, 56, 39–64. [Google Scholar] [CrossRef]
- Gourcerol, B.; Kontak, D.J.; Petrus, J.A.; Thurston, P.C. Application of LA ICP-MS analysis of arsenopyrite to gold metallogeny of the Meguma Terrane, Nova Scotia, Canada. Gondwana Res. 2020, 81, 265–290. [Google Scholar] [CrossRef]
- Wagner, T.; Klemd, R.; Wenzel, T.; Mattson, B. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold. Geology 2007, 35, 775–778. [Google Scholar] [CrossRef]
- Hastie, E.C.G.; Schindler, M.; Kontak, D.J. Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution–reprecipitation and Ostwald ripening. Commun. Earth Environ. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Lawley, C.J.M.; Creaser, R.A.; Jackson, S.; Yang, Z.; Davis, B.; Pehrsson, S.; Dubé, B.; Mercier-Langevin, P.; Vaillancourt, D. Unravelling the Western Churchill Provincepaleoproterozoic gold metalloted: Constraints from Re-Os arsenopyrite and U-Pb xenotime geochronology and LA-ICP-MS arsenopyrite trace element chemistry at the BIF-hosted Meliadine Gold District, Nunavut, Canada. Econ. Geol. 2015, 110, 1425–1454. [Google Scholar] [CrossRef]
- Xu, G.F.; Shao, J.L. The characteristic typomorphic of pyrite and significance. Geol. Rev. 1980, 26, 541–546. [Google Scholar]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co: Ni ratios and genesis of the big cadia iron-copper deposit, New South Wales, Australia. Miner. Depos. 1987, 22, 292–303. [Google Scholar] [CrossRef]
- Wu, Y.F.; Fougerouse, D.; Evans, K.; Reddy, S.M.; Saxey, D.W.; Guagliardo, P.; Li, J.W. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics. Geology 2019, 47, 641–644. [Google Scholar] [CrossRef]
- Koglin, N.; Frimmel, H.E.; Minter, W. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Depos. 2010, 45, 259–280. [Google Scholar] [CrossRef]
- Zhao, H.X.; Frimmel, H.E.; Jiang, S.Y. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geol. Rev. 2011, 43, 142–153. [Google Scholar] [CrossRef]
- Palme, H.; O’Neill, H.S.C. Cosmochemical estimates of mantle composition. Treatise Geochem. 2003, 2, 568. [Google Scholar]
- Rudnick, R.L.; Gao, S.; Holland, H.D. Composition of the continental crust. Crust 2003, 3, 1–64. [Google Scholar]
- Yu, G.; Yang, G.; Chen, J. Re-Os dating of gold-bearing arsenopyrite of the Maoling gold deposit, Liaoning Province, Northeast China and its geological significance. Chin. Sci. Bull. 2005, 50, 1509–1514. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, J.; Li, J. Gold and sulfur sources of the Taipingdong Carlin-type gold deposit: Constraints from simultaneous determination of sulfur isotopes and trace elements in pyrite using nanoscale secondary ion mass spectroscopy. Ore Geol. Rev. 2020, 117, 103299. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, Eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
Stage | Point | Ga | Ge | S | Ag | Au | Ni | Co | As | Fe | Cu | Zn | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F4-4-PY-1 | 0 | 0.0281 | 49.4148 | 0.0041 | 0.0625 | 0.0754 | 0.0761 | 0 | 49.1491 | 0.1022 | 0.0069 | 99.6488 |
1 | F4-4-PY-2 | 0 | 0 | 49.8711 | 0.0189 | 0 | 0.0036 | 0.3949 | 0 | 48.8738 | 0.0149 | 0 | 99.9457 |
1 | ZK141-H11 | 0 | 0 | 48.158 | 0.028 | 0 | 0.025 | 0.091 | 0.049 | 50.142 | 0.054 | 0 | 99.128 |
1 | ZK141-H11 | 0 | 0 | 52.469 | 0.029 | 0.009 | 0 | 0.002 | 0.061 | 46.959 | 0 | 0 | 100.14 |
1 | N2-PY-1 | 0 | 0 | 51.2155 | 0.0118 | 0.0069 | 0.009 | 0.1385 | 0 | 47.2491 | 0.0177 | 0 | 99.3704 |
2 | F4-2-PY-5 | 0 | 0.0018 | 49.1633 | 0.0077 | 0.0416 | 0.0179 | 0.0159 | 0 | 49.1354 | 0 | 0.0157 | 99.1843 |
2 | F4-1-PY-1 | 0 | 0 | 50.1432 | 0 | 0.0832 | 0 | 0.039 | 0.005 | 48.297 | 0.1367 | 0.0088 | 99.506 |
2 | F4-1-PY-2 | 0 | 0.0053 | 49.4552 | 0.001 | 0.0902 | 0.0072 | 0.0142 | 0 | 48.9403 | 0.0121 | 0.0216 | 99.2505 |
2 | F4-1-PY-4 | 0 | 0 | 46.3357 | 0 | 0.0765 | 0.0394 | 0.0618 | 0 | 48.4876 | 0 | 0 | 95.7775 |
2 | ZK141-H13 | 0 | 0 | 52.46 | 0.027 | 0.049 | 0.041 | 0.098 | 0.111 | 46.347 | 0 | 0 | 96.866 |
2 | ZK141-H13 | 0 | 0 | 52.203 | 0.008 | 0.056 | 0 | 0.087 | 0.022 | 47.183 | 0.019 | 0 | 100.288 |
2 | H17-PY-3 | 0 | 0.0311 | 52.1037 | 0.0144 | 0 | 0.1528 | 0.1048 | 0 | 46.7288 | 0.0568 | 0.0088 | 100.0108 |
2 | ZK141-H13 | 0 | 0 | 52.051 | 0.042 | 0 | 0.034 | 0.044 | 0 | 47.189 | 0 | 0.057 | 100.046 |
2 | H17-PY-1 | 0.0371 | 0.0417 | 50.4985 | 0 | 0.1522 | 0.0126 | 0.0585 | 0 | 46.7403 | 0 | 0.0775 | 98.3235 |
2 | F4-2-PY-6 | 0.005 | 0 | 49.4862 | 0 | 0 | 0.0108 | 0.0584 | 0 | 49.0708 | 0.0177 | 0.0441 | 99.4674 |
2 | F4-2-PY-1 | 0.01 | 0 | 50.3203 | 0 | 0 | 0.1221 | 0.0567 | 0.0237 | 49.1287 | 0.0735 | 0 | 100.4499 |
2 | ZK141-H13 | 0.007 | 0 | 52.217 | 0.023 | 0 | 0 | 0.05 | 0.057 | 47.016 | 0.045 | 0.054 | 100.158 |
2 | ZK141-H13 | 0 | 0 | 52.287 | 0 | 0.013 | 0 | 0.073 | 0.064 | 47.294 | 0 | 0 | 100.429 |
2 | ZK141-H13 | 0 | 0 | 51.988 | 0 | 0.011 | 0 | 0.016 | 0 | 47.423 | 0.001 | 0.07 | 100.174 |
2 | ZK141-H13 | 0.017 | 0.014 | 51.694 | 0 | 0 | 0 | 0.085 | 0.051 | 47.369 | 0.05 | 0 | 99.957 |
2 | ZK141-H13 | 0.012 | 0 | 51.966 | 0 | 0 | 0 | 0.044 | 0.108 | 47.176 | 0.027 | 0 | 99.995 |
2 | ZK141-H13 | 0 | 0 | 52.841 | 0.029 | 0 | 0 | 0.046 | 0.046 | 46.076 | 0.024 | 0 | 99.711 |
2 | ZK141-H13 | 0.005 | 0 | 52.144 | 0 | 0 | 0 | 0.011 | 0.014 | 46.856 | 0 | 0.051 | 99.661 |
2 | ZK141-H13 | 0 | 0.01 | 52.333 | 0.021 | 0.041 | 0.056 | 0.02 | 0 | 46.235 | 0.056 | 0 | 99.415 |
2 | ZK141-H17 | 0 | 0.038 | 53.224 | 0 | 0 | 0 | 0.025 | 0 | 45.36 | 0.271 | 0.025 | 99.601 |
2 | F4-2-PY-7 | 0 | 0.007 | 50.2351 | 0 | 0 | 0 | 0.0656 | 0 | 48.9749 | 0.0325 | 0 | 100.0207 |
2 | F4-2-PY-3 | 0 | 0 | 50.2032 | 0 | 0 | 0.0862 | 0.0956 | 0.0174 | 48.9903 | 0.0009 | 0.0441 | 100.1669 |
2 | F4-2-PY-4 | 0 | 0 | 49.342 | 0 | 0 | 0.0072 | 0.0106 | 0.203 | 48.8755 | 0.0446 | 0 | 99.2679 |
3 | 1549-PY-2 | 0 | 0 | 52.33 | 0.0201 | 0.0415 | 0 | 0.0462 | 0 | 47.0166 | 0.0121 | 0 | 100.2038 |
3 | ZK141-H6 | 0 | 0 | 50.451 | 0 | 0.019 | 0 | 0.069 | 0 | 48.152 | 0.123 | 0 | 99.513 |
3 | ZK141-H6 | 0 | 0 | 51.615 | 0.015 | 0.021 | 0 | 0.082 | 0.016 | 47.427 | 0.034 | 0 | 99.975 |
3 | ZK141-H6 | 0 | 0.01 | 52.506 | 0.029 | 0 | 0 | 0.06 | 0.009 | 46.61 | 0.337 | 0 | 100.246 |
3 | ZK141-H1 | 0 | 0.05 | 51.433 | 0 | 0.026 | 0 | 0.053 | 0 | 46.689 | 0.003 | 0.069 | 99.069 |
3 | ZK141-H4 | 0 | 0 | 53.031 | 0.019 | 0.06 | 0 | 0.042 | 0.007 | 46.156 | 0 | 0.046 | 100.059 |
3 | ZK141-H11 | 0.02 | 0.034 | 52.731 | 0.019 | 0 | 0.046 | 0.111 | 0 | 46.675 | 0.056 | 0 | 100.372 |
3 | ZK141-H11 | 0.012 | 0.033 | 51.712 | 0.042 | 0 | 0.021 | 0.037 | 0 | 47.762 | 0.056 | 0 | 100.326 |
3 | H17-PY-2 | 0 | 0 | 52.5273 | 0 | 0.0345 | 0 | 0.0444 | 0.0442 | 46.5909 | 0.0456 | 0.0619 | 100.087 |
3 | H17-PY-4 | 0 | 0 | 52.0677 | 0.0397 | 0.0345 | 0.0503 | 0.0994 | 0.0369 | 46.34 | 0.1396 | 0 | 99.7345 |
3 | F4-1-2-PY-2 | 0 | 0 | 50.3255 | 0.0072 | 0 | 0.0287 | 0.0514 | 0.0199 | 48.712 | 0.0474 | 0.0088 | 99.9712 |
3 | F4-1-2-PY-3 | 0 | 0.0228 | 49.6464 | 0.0066 | 0.0347 | 0.0789 | 0.0973 | 0.0623 | 48.6983 | 0.053 | 0.0441 | 99.4791 |
3 | F4-1-2-PY-4 | 0 | 0.0508 | 49.1736 | 0 | 0.0069 | 0.0269 | 0.023 | 0 | 48.3353 | 0.0474 | 0 | 98.4057 |
3 | F4-1-3-PY-2 | 0 | 0 | 49.2931 | 0.0097 | 0 | 0 | 0.092 | 0.0486 | 48.5112 | 0.0567 | 0 | 98.7843 |
3 | F4-1-3-PY-3 | 0 | 0 | 49.3239 | 0 | 0 | 0.0251 | 0.0673 | 0 | 48.6918 | 0.0688 | 0.0049 | 98.9047 |
3 | F4-1-3-PY-4 | 0 | 0.0123 | 49.2288 | 0 | 0 | 0 | 0.0584 | 0.005 | 48.6244 | 0.0762 | 0.0265 | 98.745 |
3 | 1549-PY-1 | 0.0222 | 0 | 52.3566 | 0.0015 | 0.0553 | 0.0396 | 0.048 | 0 | 47.1191 | 0.0475 | 0.0314 | 100.4698 |
3 | F4-1-2-PY-6 | 0 | 0 | 49.9961 | 0.0312 | 0 | 0.6241 | 0.8695 | 0.0062 | 47.2792 | 0.0753 | 0 | 99.6443 |
3 | 1549-PY-3 | 0 | 0 | 52.7541 | 0.0015 | 0 | 0.0395 | 0.0888 | 0.1303 | 46.8642 | 0.0978 | 0.0913 | 100.8182 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiong, L.; Zhong, Z.; Ren, S.; Zhang, G.; Wang, J.; Zhang, Y.; Song, C. Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals 2022, 12, 1196. https://doi.org/10.3390/min12101196
Wang Y, Xiong L, Zhong Z, Ren S, Zhang G, Wang J, Zhang Y, Song C. Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals. 2022; 12(10):1196. https://doi.org/10.3390/min12101196
Chicago/Turabian StyleWang, Ying, Li Xiong, Ze Zhong, Shenglian Ren, Gang Zhang, Juan Wang, Yan Zhang, and Chuanzhong Song. 2022. "Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China" Minerals 12, no. 10: 1196. https://doi.org/10.3390/min12101196
APA StyleWang, Y., Xiong, L., Zhong, Z., Ren, S., Zhang, G., Wang, J., Zhang, Y., & Song, C. (2022). Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China. Minerals, 12(10), 1196. https://doi.org/10.3390/min12101196