Trace Metal Enrichment in the Colloidal Fraction in Soils Developing on Abandoned Mine Spoils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Colloid Extraction
2.2. Acid-Extractable Metal Concentrations in Bulk Soil and Extracted Colloids
2.3. Solid-Phase Characterization of Colloids Extracted from Bulk Soil
3. Results
3.1. Mineralogical Composition of Soil Colloids
3.2. Morphology, Texture, and Composition of Soil Colloids
3.3. Nanoscale Characterization of Extracted Colloids
3.4. Acid-Extractable Metal Distribution in the Bulk and Colloid Fractions
4. Discussion
4.1. The Relationship between Bulk and Colloid Mineralogical Composition
4.2. Relationship between Extractable Metals and Soil Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Evangelou, V.B. Pyrite Oxidation and Its Control: Solution Chemistry, Surface Chemistry, Acid Mine Drainage (AMD), Molecular Oxidation Mechanisms, Microbial Role, Kinetics, Control, Ameliorates and Limitations, Microencapsulation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Lindsay, M.B.J.; Moncur, M.C.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Clark, E.V.; Daniels, W.L.; Zipper, C.E.; Eriksson, K. Mineralogical influences on water quality from weathering of surface coal mine spoils. Appl. Geochem. 2018, 91, 97–106. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, Y. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere 2021, 269, 128720. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.W.; Mosley, L.M.; Raven, M.D.; Shand, P. Schwertmannite formation and properties in acidic drain environments following exposure and oxidation of acid sulfate soils in irrigation areas during extreme drought. Geoderma 2017, 308, 235–251. [Google Scholar] [CrossRef]
- Chen, Q.; Cohen, D.R.; Andersen, M.S.; Robertson, A.M.; Jones, D.R. Stability and trace element composition of natural schwertmannite precipitated from acid mine drainage. Appl. Geochem. 2022, 143, 105370. [Google Scholar] [CrossRef]
- Bigham, J.; Schwertmann, U.; Traina, S.; Winland, R.; Wolf, M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta 1996, 60, 2111–2121. [Google Scholar] [CrossRef]
- Buerge-Weirich, D.; Hari, R.; Xue, H.; Behra, P.; Sigg, L. Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environ. Sci. Technol. 2002, 36, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Karapınar, N. Removal of heavy metal ions by ferrihydrite: An opportunity to the treatment of acid mine drainage. Water Air Soil Pollut. 2016, 227, 193. [Google Scholar]
- Marescotti, P.; Carbone, C.; Comodi, P.; Frondini, F.; Lucchetti, G. Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–Cu-sulfide mine (Eastern Liguria, Italy). Appl. Geochem. 2012, 27, 577–589. [Google Scholar] [CrossRef]
- Dang, Z.; Liu, C.; Haigh, M.J. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ. Pollut. 2002, 118, 419–426. [Google Scholar] [CrossRef]
- Yin, X.; Gao, B.; Ma, L.Q.; Saha, U.K.; Sun, H.; Wang, G. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 2010, 177, 620–625. [Google Scholar] [CrossRef]
- Grolimund, D.; Borkovec, M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: Mathematical modeling and laboratory column experiments. Environ. Sci. Technol. 2005, 39, 6378–6386. [Google Scholar] [CrossRef] [PubMed]
- Löv, Å.; Cornelis, G.; Larsbo, M.; Persson, I.; Sjöstedt, C.; Gustafsson, J.P.; Boye, K.; Kleja, D.B. Particle- and colloid-facilitated Pb transport in four historically contaminated soils—Speciation and effect of irrigation intensity. Appl. Geochem. 2018, 96, 327–338. [Google Scholar] [CrossRef]
- Murali, R.; Murthy, C.; Sengupta, R. Adsorption studies of toxic metals and dyes on soil colloids and their transport in natural porous media. Int. J. Environ. Sci. Technol. 2015, 12, 3563–3574. [Google Scholar] [CrossRef] [Green Version]
- Akbour, R.A.t.; Douch, J.; Hamdani, M.; Schmitz, P. Transport of Kaolinite Colloids through Quartz Sand: Influence of Humic Acid, Ca2+, and Trace Metals. J. Colloid Interface Sci. 2002, 253, 1–8. [Google Scholar] [CrossRef]
- Carbone, C.; Dinelli, E.; Marescotti, P.; Gasparotto, G.; Lucchetti, G. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. J. Geochem. Explor. 2013, 132, 188–200. [Google Scholar] [CrossRef]
- Arai, Y. Spectroscopic evidence for Ni (II) surface speciation at the iron oxyhydroxides− water interface. Environ. Sci. Technol. 2008, 42, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Wang, H.; Liu, H.; Yang, C.; Wei, Y.; Hou, D. Evaluation of the ability of ferrihydrite to bind heavy metal ions: Based on formation environment, adsorption reversibility and ageing. Appl. Geochem. 2014, 45, 114–119. [Google Scholar] [CrossRef]
- Crançon, P.; Pili, E.; Charlet, L. Uranium facilitated transport by water-dispersible colloids in field and soil columns. Sci. Total Environ. 2010, 408, 2118–2128. [Google Scholar] [CrossRef]
- Sen, T.K.; Khilar, K.C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 2006, 119, 71–96. [Google Scholar]
- Gomez-Gonzalez, M.A.; Voegelin, A.; Garcia-Guinea, J.; Bolea, E.; Laborda, F.; Garrido, F. Colloidal mobilization of arsenic from mining-affected soils by surface runoff. Chemosphere 2016, 144, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gonzalez, M.A.; Villalobos, M.; Marco, J.F.; Garcia-Guinea, J.; Bolea, E.; Laborda, F.; Garrido, F. Iron oxide—Clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas. Chemosphere 2018, 197, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Serrano, S.; Gomez-Gonzalez, M.A.; O’Day, P.A.; Laborda, F.; Bolea, E.; Garrido, F. Arsenic speciation in the dispersible colloidal fraction of soils from a mine-impacted creek. J. Hazard. Mater. 2015, 286, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Wise, M. Huff Run Watershed Plan; Huff Run Watershed Restoration Partnership, Inc.: Mineral City, OH, USA, 2005. [Google Scholar]
- Smart, K.E. Exploring Physical and Chemical Trends in a Chronosequence of Technosols; Kent State University: Kent, OH, USA, 2021. [Google Scholar]
- Haering, K.C.; Daniels, W.L.; Galbraith, J.M. Appalachian Mine Soil Morphology and Properties. Soil Sci. Soc. Am. J. 2004, 68, 1315–1325. [Google Scholar] [CrossRef]
- Daniels, W.L.; Haering, K.; Galbraith, J.; Thomas, J. Mine Soil Classification and Mapping Issues on Pre-and Post-SMCRA Appalachian Coal Mined Lands. Proc. Am. Soc. Min. Reclam. 2004, 450–481. [Google Scholar]
- ODNR. Economic Impact Analysis of the Ohio Abandoned Mine Land Program; Ohio Department of Natural Resources Division of Mineral Resources Management, Ohio University’sVoinovich School of Leadership and Public Affairs: Athens, OH, USA, 2014. [Google Scholar]
- ODNR. Huff Run Watershed Acid Mine Drainage Abatement and Treatment Plan; Prepared for Ohio DNR by Gannett Fleming; ODNR: Columbus, OH, USA, 2000; Available online: watersheddata.com (accessed on 20 September 2022).
- EPA, U. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Giannuzzi, L.A.; Kempshall, B.W.; Schwartz, S.M.; Lomness, J.K.; Prenitzer, B.I.; Stevie, F.A. FIB lift-out specimen preparation techniques: Ex-situ and in-situ methods. In Focused Ion Beams: Instrumentation, Theory, Techniques and Practice; Giannuzzi, L.A., Stevie, F.A., Eds.; Springer: New York, NY, USA, 2005; pp. 201–228. [Google Scholar]
- Singer, D.M.; Herndon, E.; Cole, K.; Burkey, M.; Morisson, S.; Cahill, M.; Bartucci, M.A. Micron-scale distribution controls metal(loid) release during simulated weathering of a Pennsylvanian coal shale. Geochim. Cosmochim. Acta 2020, 269, 117–135. [Google Scholar] [CrossRef]
- Singer, D.M.; Herndon, E.; Cole, K.; Koval, J.; Perdrial, N. Formation of secondary mineral coatings and the persistence of reduced metal-bearing phases in soils developing on historic coal mine spoil. Appl. Geochem. 2020, 121, 104711. [Google Scholar] [CrossRef]
- Chowdhury, M.A.R.; Singer, D.M.; Herndon, E. Colloidal metal transport in soils developing on historic coal mine spoil. Appl. Geochem. 2021, 128, 104933. [Google Scholar]
- Hoagland, B.; Navarre-Sitchler, A.; Cowie, R.; Singha, K. Groundwater–Stream Connectivity Mediates Metal(loid) Geochemistry in the Hyporheic Zone of Streams Impacted by Historic Mining and Acid Rock Drainage. Front. Water 2020, 2, 600409. [Google Scholar] [CrossRef]
- Chikanda, F.; Otake, T.; Koide, A.; Ito, A.; Sato, T. The formation of Fe colloids and layered double hydroxides as sequestration agents in the natural remediation of mine drainage. Sci. Total Environ. 2021, 774, 145183. [Google Scholar] [CrossRef]
- Kimball, B.A.; Callender, E.; Axtmann, E.V. Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A. Appl. Geochem. 1995, 10, 285–306. [Google Scholar] [CrossRef]
- Rahman, T.; George, J.; Shipley, H.J. Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Sci. Total Environ. 2013, 463, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Denaix, L.; Semlali, R.; Douay, F. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ. Pollut. 2001, 114, 29–38. [Google Scholar] [CrossRef]
- Filella, M.; Chanudet, V.; Philippo, S.; Quentel, F. Particle size and mineralogical composition of inorganic colloids in waters draining the adit of an abandoned mine, Goesdorf, Luxembourg. Appl. Geochem. 2009, 24, 52–61. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Bulicek, M.C.; Metge, D.W.; Harvey, R.W.; Ryan, J.N.; Boehm, A.B. Mobilization of microspheres from a fractured soil during intermittent infiltration events. Vadose Zone J. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Saiers, J.E.; Ryan, J.N. Colloid mobilization in a fractured soil: Effect of pore-water exchange between preferential flow paths and soil matrix. Environ. Sci. Technol. 2016, 50, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, D.I.; Bertsch, P.M.; Adriano, D.C. Mineralogical and Physicochemical Differences between Mobile and Nonmobile Colloidal Phases in Reconstructed Pedons. Soil Sci. Soc. Am. J. 1997, 61, 641–649. [Google Scholar] [CrossRef]
- Al, T.A.; Blowes, D.W.; Martin, C.J.; Cabri, L.J.; Jambor, J.L. Aqueous geochemistry and analysis of pyrite surfaces in sulfide-rich mine tailings. Geochim. Cosmochim. Acta 1997, 61, 2353–2366. [Google Scholar] [CrossRef]
- Huminicki, D.M.C.; Rimstidt, J.D. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl. Geochem. 2009, 24, 1626–1634. [Google Scholar] [CrossRef]
- Artinger, R.; Kienzler, B.; Schüßler, W.; Kim, J.I. Effects of humic substances on the 241Am migration in a sandy aquifer: Column experiments with Gorleben groundwater/sediment systems. J. Contam. Hydrol. 1998, 35, 261–275. [Google Scholar] [CrossRef]
- Karathanasis, A.D. Subsurface Migration of Copper and Zinc Mediated by Soil Colloids. Soil Sci. Soc. Am. J. 1999, 63, 830–838. [Google Scholar] [CrossRef]
- Miller, J.O.; Karathanasis, A.D.; Matocha, C.J. In Situ Generated Colloid Transport of Cu and Zn in Reclaimed Mine Soil Profiles Associated with Biosolids Application. Appl. Environ. Soil Sci. 2011, 2011, 762173. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.; Valente, T.; Braga, M.A.S.; Grande, J.A.; de la Torre, M.L. Enrichment of trace elements in the clay size fraction of mining soils. Environ. Sci. Pollut. Res. 2016, 23, 6039–6045. [Google Scholar] [CrossRef] [PubMed]
- Konrad, A.; Billiy, B.; Regenbogen, P.; Bol, R.; Lang, F.; Klumpp, E.; Siemens, J. Forest soil colloids enhance delivery of phosphorus into a diffusive gradient in thin films (DGT) Sink. Front. For. Glob. Chang. 2021, 3, 577364. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Lindsay, M.B.; Condon, P.D.; Jambor, J.L.; Lear, K.G.; Blowes, D.W.; Ptacek, C.J. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage. Appl. Geochem. 2009, 24, 2212–2221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, M.A.R.; Singer, D.M. Trace Metal Enrichment in the Colloidal Fraction in Soils Developing on Abandoned Mine Spoils. Minerals 2022, 12, 1290. https://doi.org/10.3390/min12101290
Chowdhury MAR, Singer DM. Trace Metal Enrichment in the Colloidal Fraction in Soils Developing on Abandoned Mine Spoils. Minerals. 2022; 12(10):1290. https://doi.org/10.3390/min12101290
Chicago/Turabian StyleChowdhury, Md Abu Raihan, and David M. Singer. 2022. "Trace Metal Enrichment in the Colloidal Fraction in Soils Developing on Abandoned Mine Spoils" Minerals 12, no. 10: 1290. https://doi.org/10.3390/min12101290
APA StyleChowdhury, M. A. R., & Singer, D. M. (2022). Trace Metal Enrichment in the Colloidal Fraction in Soils Developing on Abandoned Mine Spoils. Minerals, 12(10), 1290. https://doi.org/10.3390/min12101290