Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition
Abstract
:1. Introduction
2. Geological Background
3. Samples and Methodology
3.1. Sample Description
3.2. Apatite LA-ICP-MS U-Pb Dating
3.3. Trace Element Analyses of Apatite
4. Results
4.1. Morphology and Geochronology of Apatite
4.2. Trace Elements of Apatites
Sample No. | Th | U | Th/U | Isotopic Ratios | |||||
---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 207Pb/235U | 206Pb/238U | |||||||
Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | ||||
Apatite from monzogranite (21HK01): 297 ± 8 Ma (MSWD = 1.3, n = 26) | |||||||||
21HK01-02 | 18 | 5 | 3.56 | 0.7492 | 0.0190 | 25.2888 | 1.2111 | 0.2488 | 0.0110 |
21HK01-03 | 13 | 4 | 3.61 | 0.5126 | 0.0203 | 6.2460 | 0.2403 | 0.0935 | 0.0028 |
21HK01-04 | 11 | 3 | 3.62 | 0.5533 | 0.0239 | 6.9290 | 0.2295 | 0.0995 | 0.0027 |
21HK01-05 | 16 | 6 | 2.78 | 0.6071 | 0.0208 | 11.4069 | 0.4121 | 0.1383 | 0.0042 |
21HK01-07 | 6 | 3 | 2.26 | 0.6596 | 0.0245 | 13.1914 | 0.4346 | 0.1541 | 0.0045 |
21HK01-08 | 21 | 4 | 4.68 | 0.3804 | 0.0208 | 3.3962 | 0.1559 | 0.0709 | 0.0021 |
21HK01-09 | 13 | 5 | 2.47 | 0.4698 | 0.0178 | 5.7372 | 0.2228 | 0.0909 | 0.0024 |
21HK01-11 | 8 | 4 | 2.00 | 0.5315 | 0.0229 | 7.6438 | 0.3909 | 0.1073 | 0.0043 |
21HK01-15 | 15 | 5 | 3.15 | 0.5119 | 0.0234 | 6.7918 | 0.2511 | 0.1003 | 0.0029 |
21HK01-17 | 15 | 6 | 2.56 | 0.4387 | 0.0131 | 4.8747 | 0.1352 | 0.0840 | 0.0018 |
21HK01-18 | 10 | 4 | 2.38 | 0.5298 | 0.0257 | 7.0921 | 0.2743 | 0.1036 | 0.0027 |
21HK01-19 | 13 | 4 | 3.21 | 0.3997 | 0.0159 | 4.0936 | 0.1495 | 0.0785 | 0.0021 |
21HK01-20 | 7 | 3 | 2.07 | 0.5729 | 0.0290 | 9.1053 | 0.4528 | 0.1223 | 0.0051 |
21HK01-22 | 12 | 3 | 3.73 | 0.5013 | 0.0322 | 5.7695 | 0.2848 | 0.0942 | 0.0035 |
21HK01-23 | 7 | 3 | 2.15 | 0.6555 | 0.0166 | 18.8423 | 0.7507 | 0.2071 | 0.0062 |
21HK01-24 | 8 | 3 | 2.34 | 0.5269 | 0.0181 | 7.8596 | 0.2612 | 0.1137 | 0.0033 |
21HK01-25 | 10 | 5 | 2.09 | 0.5818 | 0.0185 | 11.2593 | 0.3663 | 0.1431 | 0.0033 |
21HK01-26 | 9 | 3 | 2.73 | 0.5499 | 0.0235 | 9.6934 | 0.6076 | 0.1298 | 0.0058 |
21HK01-27 | 14 | 5 | 2.61 | 0.4891 | 0.0130 | 6.9329 | 0.1698 | 0.1067 | 0.0022 |
21HK01-29 | 6 | 3 | 2.30 | 0.5879 | 0.0313 | 9.5268 | 0.2753 | 0.1290 | 0.0042 |
21HK01-30 | 9 | 3 | 2.58 | 0.6800 | 0.0257 | 23.3600 | 1.2905 | 0.2484 | 0.0102 |
21HK01-32 | 7 | 3 | 2.33 | 0.6587 | 0.0244 | 17.7866 | 0.7779 | 0.2014 | 0.0080 |
21HK01-33 | 10 | 3 | 2.94 | 0.6387 | 0.0213 | 16.1999 | 0.7132 | 0.1882 | 0.0080 |
21HK01-34 | 14 | 4 | 3.28 | 0.7293 | 0.0158 | 32.4341 | 0.9251 | 0.3267 | 0.0085 |
21HK01-36 | 5 | 3 | 1.75 | 0.5571 | 0.0205 | 10.0301 | 0.2563 | 0.1366 | 0.0030 |
21HK01-37 | 7 | 3 | 2.46 | 0.5858 | 0.0206 | 11.2902 | 0.3714 | 0.1475 | 0.0040 |
Sample | 01-01 | 01-02 | 01-06 | 01-07 | 01-12 | 01-13 | 01-14 | 01-18 | 01-19 | 01-21 | 01-23 | 01-24 | 01-26 | 01-28 | 01-29 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 186,406 | 185,857 | 186,152 | 190,362 | 183,815 | 183,180 | 201,961 | 221,295 | 201,068 | 195,086 | 182,191 | 178,812 | 184,656 | 187,632 | 187,714 |
Sr | 614.5 | 495.8 | 518.2 | 503.8 | 613.6 | 622.6 | 607.5 | 655.6 | 503.3 | 440.8 | 504.5 | 539.7 | 551.5 | 518.9 | 511.2 |
Y | 141.8 | 185.4 | 393.6 | 253.1 | 151 | 503.4 | 202.1 | 148 | 216.2 | 243 | 182.3 | 152.7 | 128.4 | 260 | 300.8 |
La | 125.7 | 109 | 268 | 150.4 | 148.4 | 116.1 | 184.8 | 144.1 | 146.1 | 143 | 151 | 131.4 | 159.6 | 193.6 | 209 |
Ce | 359.4 | 304.3 | 762.9 | 465.1 | 381.9 | 356.6 | 459.1 | 384.1 | 417.3 | 448.4 | 422.3 | 367.1 | 409.1 | 459.7 | 585.1 |
Pr | 47.7 | 41.3 | 101.3 | 67.5 | 49.5 | 61.1 | 56.6 | 48.2 | 58.6 | 66.2 | 56.3 | 48.4 | 48.7 | 59 | 78.5 |
Nd | 214.5 | 195.9 | 458.8 | 317.2 | 218.9 | 363.3 | 252.7 | 214.3 | 280.1 | 327.9 | 258.7 | 226.4 | 204.2 | 270 | 366.5 |
Sm | 36.8 | 38.9 | 87.3 | 61.6 | 39.1 | 123.4 | 45.2 | 40 | 52.5 | 64.7 | 44.4 | 40.7 | 32.4 | 54.8 | 94.1 |
Eu | 9.4 | 9.4 | 21 | 15.2 | 9.5 | 27.4 | 12.2 | 10.4 | 11.3 | 14.7 | 10.1 | 8.9 | 8 | 16.2 | 24.5 |
Gd | 36.4 | 41.9 | 86.4 | 61.2 | 38.2 | 148.7 | 46.5 | 40.1 | 53.9 | 60.7 | 44.3 | 41.2 | 30.9 | 58 | 106.2 |
Tb | 4.2 | 5.1 | 10.9 | 7.2 | 4.3 | 19.3 | 5.9 | 4.7 | 6.6 | 7.1 | 5.2 | 4.7 | 3.6 | 7.2 | 12.7 |
Dy | 21.7 | 27.6 | 59.9 | 37.7 | 23.2 | 91.1 | 31.3 | 24.2 | 34.2 | 36.2 | 28.4 | 24.6 | 19.1 | 39.4 | 60.1 |
Ho | 4.2 | 5.8 | 12.3 | 7.8 | 4.8 | 16.6 | 6.4 | 4.9 | 7.1 | 7.5 | 5.8 | 4.9 | 3.9 | 7.8 | 10.6 |
Er | 10.7 | 15 | 31.9 | 19.6 | 12 | 40.3 | 16.4 | 12.3 | 17.7 | 19.1 | 15.4 | 12.3 | 10.7 | 21.3 | 24.6 |
Tm | 1.4 | 1.9 | 4.1 | 2.4 | 1.6 | 4.8 | 2.1 | 1.5 | 2.1 | 2.3 | 1.8 | 1.6 | 1.3 | 2.8 | 3 |
Yb | 9.1 | 11.3 | 24.6 | 16.3 | 10 | 26.6 | 13.2 | 10.3 | 13.1 | 15.1 | 12 | 9.2 | 8.4 | 17.8 | 19 |
Lu | 1.5 | 1.9 | 4 | 3 | 1.6 | 3.9 | 2.3 | 1.7 | 2.2 | 2.5 | 1.9 | 1.5 | 1.5 | 3.1 | 3 |
Sr/Y | 4.33 | 2.67 | 1.32 | 1.99 | 4.06 | 1.24 | 3.01 | 4.43 | 2.33 | 1.81 | 2.77 | 3.53 | 4.29 | 2 | 1.7 |
ΣLREE | 747 | 650 | 1591 | 1000 | 799 | 897 | 953 | 791 | 902 | 985 | 888 | 773 | 822 | 982 | 1239 |
ΣHREE | 231 | 296 | 628 | 408 | 247 | 855 | 326 | 248 | 353 | 394 | 297 | 253 | 208 | 417 | 540 |
5. Discussion
5.1. Origins of Apatite
5.2. Implications of the Timing of Paleozoic Metamorphism in the Jiaobei Terrane
6. Conclusions
- The origin of the Muniushan apatite is magmatic, the compositional characteristics being similar to the apatite in mafic igneous rocks and I-type granitoids previously published. Apatite was formed simultaneously with the Paleoproterozoic Muniushan monzogranite but suffered metamorphism later.
- The combination of the composition and U-Pb ages of apatite can be used to constrain the younger metamorphic event that occurred in the Jiaobei Terrane in the Early Permian. Uranium-Pb geochronology of the Muniushan apatite gives a metamorphic age of 297 ± 8 Ma, consistent with the metamorphic ages in the Hong’an Block and Ogcheon belt which represent the response of the Jiaobei Terrane to the Paleo-Tethys oceanic crust subduction in the Early Permian.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.B.; Hanchar, J.M.; Gao, S.; Sylvester, P.J.; Tubrett, M.; Qiu, H.N.; Wijbrans, J.R.; Brouwer, F.M.; Yang, S.H.; Yang, Q.J. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth Planet. Sci. Lett. 2009, 277, 345–354. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Res. 2013, 23, 1402–1428. [Google Scholar] [CrossRef]
- Li, S.; Jahn, B.M.; Zhao, S.; Dai, L.; Li, X.; Suo, Y.; Guo, L.; Wang, Y.; Liu, X.; Lan, H. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Sci. Rev. 2017, 166, 270–285. [Google Scholar] [CrossRef]
- Cho, M.; Kim, H. Metamorphic evolution of the Ogcheon belt, Korea: A review and new age constraints. Int. Geol. Rev. 2005, 47, 41–57. [Google Scholar] [CrossRef]
- Li, S.; Kusky, T.M.; Zhao, G.; Liu, X.; Zhang, G.; Kopp, H.; Wang, L. Two-stage Triassic exhumation of HP-UHP terranes in the western Dabie orogen of China: Constraints from structural geology. Tectonophysics 2010, 490, 267–293. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Zhang, G.; Liu, X.; Dong, S.; Wang, Y.; Liu, X.; Suo, Y.; Dai, L.; Jin, C. Not all folds and thrusts in the Yangtze foreland thrust belt are related to the Dabie Orogen: Insights from Mesozoic deformation south of the Yangtze River. Geol. J. 2010, 45, 650–663. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Hauzenberger, C.; Neubauer, F.; Yang, Z.; Liu, X. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 2011, 122, 39–56. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhang, L.; McClelland, W.C.; Cuthbert, S. Processes in continental collision zones: Preface. Lithos 2012, 136, 1–9. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Mineral. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Liou, J. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. Geol. Soc. Lond. Spec. Publ. 2004, 226, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Hacker, B.R.; Wallis, S.R.; Ratschbacher, L.; Grove, M.; Gehrels, G. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics 2006, 25, TC5006. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Franz, L.; Enkelmann, E.; Jonckheere, R.; Pörschke, A.; Hacker, B.R.; Dong, S.; Zhang, Y. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Spec. Pap. Geol. Soc. Am. 2006, 403, 45. [Google Scholar]
- Liu, X.; Wu, Y.; Gao, S.; Wang, J.; Peng, M.; Gong, H.; Liu, Y.; Yuan, H. Zircon U-Pb and Hf evidence for coupled subduction of oceanic and continental crust during the Carboniferous in the Huwan shear zone, western Dabie orogen, central China. J. Metamorph. Geol. 2011, 29, 233–249. [Google Scholar] [CrossRef]
- Cheong, C.S.; Jeong, G.Y.; Kim, H.; Choi, M.S.; Lee, S.H.; Cho, M. Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chem. Geol. 2003, 193, 81–92. [Google Scholar] [CrossRef]
- Cho, M.; Kim, H.; Wan, Y.; Liu, D. U−Pb zircon ages of a granitic gneiss boulder in metadiamictite from the Ogcheon metamorphic belt, Korea. Geosci. J. 2004, 8, 355–362. [Google Scholar] [CrossRef]
- Ernst, W.; Tsujimori, T.; Zhang, R.; Liou, J. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annu. Rev. Earth Planet. Sci. 2007, 35, 73–110. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Ree, J.H.; Kim, J. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: Evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. Int. J. Earth Sci. 2012, 101, 483–498. [Google Scholar] [CrossRef]
- Chamberlain, K.R.; Bowring, S.A. Apatite-feldspar U-Pb thermochronometer: A reliable, mid-range (∼450 °C), diffusion-controlled system. Chem. Geol. 2001, 172, 173–200. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. Determining accurate temperature-time paths from U-Pb thermochronology: An example from the Kaapvaal craton, southern Africa. Geochim. Cosmochim. Acta 2007, 71, 165–185. [Google Scholar] [CrossRef]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Kirkland, C.; Yakymchuk, C.; Szilas, K.; Evans, N.; Hollis, J.; McDonald, B.; Gardiner, N. Apatite: A U-Pb thermochronometer or geochronometer? Lithos 2018, 318, 143–157. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Hetherington, C.J.; Chew, D.; Huang, Y.Q.; He, D.Y.; Geng, J.Z.; Xian, H.Y. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib. Mineral. Petrol. 2021, 176, 23. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Chew, D.; Yu, C.; Ding, Z.J.; Zhou, T.; Li, S.; Sun, K.F. Buried Triassic rocks and vertical distribution of ores in the giant Jiaodong gold province (China) revealed by apatite xenocrysts in hydrothermal quartz veins. Ore Geol. Rev. 2022, 140, 104612. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.K.; Wu, Z.J.; Bai, Y.; Wang, A.J. Two metasomatic events recorded in apatite from the ore-hosting dolomite marble and implications for genesis of the giant Bayan Obo REE deposit, Inner Mongolia, Northern China. J. Asian Earth Sci. 2019, 172, 56–65. [Google Scholar] [CrossRef]
- Kerrich, R.; Cassidy, K.F. Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation—Archean to present: A review. Ore Geol. Rev. 1994, 9, 263–310. [Google Scholar] [CrossRef]
- Chesley, J.T.; Rudnick, R.L.; Lee, C.T. Re-Os systematics of mantle xenoliths from the East African Rift: Age, structure, and history of the Tanzanian craton. Geochim. Cosmochim. Acta 1999, 63, 1203–1217. [Google Scholar] [CrossRef]
- Harlov, D.E. Apatite: A fingerprint for metasomatic processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Chew, D.M.; Spikings, R.A. Geochronology and thermochronology using apatite: Time and temperature, lower crust to surface. Elements 2015, 11, 189–194. [Google Scholar] [CrossRef]
- Zeng, L.P.; Zhao, X.F.; Li, X.C.; Hu, H.; McFarlane, C. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. Am. Mineral. 2016, 101, 2468–2483. [Google Scholar] [CrossRef]
- Qiu, Y.; Groves, D.I.; McNaughton, N.J.; Wang, L.G.; Zhou, T. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Miner. Depos. 2002, 37, 283–305. [Google Scholar] [CrossRef]
- Mills, S.E.; Tomkins, A.G.; Weinberg, R.F.; Fan, H.R. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geol. Rev. 2015, 71, 150–168. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Santosh, M.; Liu, X.; Liang, Y.; Yang, L.; Zhao, R.; Yang, L. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China. Miner. Depos. 2020, 55, 257–274. [Google Scholar] [CrossRef]
- Qiu, K.F.; Goldfarb, R.J.; Deng, J.; Yu, H.; Gou, Z.; Ding, Z.; Wang, Z.; Li, D. Gold deposits of the Jiaodong Peninsula, eastern China. SEG Spec. Publ. 2020, 23, 753–773. [Google Scholar]
- Deng, J.; Yang, L.Q.; Li, R.H.; Groves, D.I.; Santosh, M.; Wang, Z.L.; Sai, S.X.; Wang, S.R. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geol. J. 2019, 54, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, Q.F.; Yang, L.Q.; Zhou, L.; Gong, Q.J.; Yuan, W.M.; Xu, H.; Guo, C.Y.; Liu, X.W. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong province, China. Acta Geol. Sin.-Engl. Ed. 2008, 82, 769–780. [Google Scholar]
- Deng, J.; Wang, C.; Bagas, L.; Carranza, E.J.M.; Lu, Y. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry. Miner. Depos. 2015, 50, 987–1006. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.; Bagas, L.; Santosh, M.; Yao, E. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Dou, J.Z.; Zhang, H.F.; Tong, Y.; Wang, F.; Chen, F.K.; Li, S.R. Application of geothermo-barometers to Mesozoic granitoids in the Jiaodong Peninsula, eastern China: Criteria for selecting methods of pressure estimation and implications for crustal exhumation. J. Asian Earth Sci. 2018, 160, 271–286. [Google Scholar] [CrossRef]
- Liu, X.; Fan, H.R.; Evans, N.J.; Yang, K.F.; Danišík, M.; McInnes, B.I.; Qin, K.Z.; Yu, X.F. Exhumation history of the Sanshandao Au deposit, Jiaodong: Constraints from structural analysis and (U-Th)/He thermochronology. Sci. Rep. 2017, 7, 7787. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Qiu, Y.; McNaughton, N.; Groves, D.; Luo, Z.; Huang, J.; Miao, L.; Liu, Y. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geol. Rev. 1998, 13, 275–291. [Google Scholar] [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Goldfarb, R.; Qiu, K.F.; Deng, J.; Chen, Y.; Yang, L. Orogenic gold deposits of China. SEG Spec. Publ. 2019, 22, 263–324. [Google Scholar]
- Zhao, Z.F.; Zheng, Y.F.; Zhang, J.; Dai, L.Q.; Li, Q.; Liu, X. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem. Geol. 2012, 328, 70–88. [Google Scholar] [CrossRef]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Song, M.; Yang, L.; Fan, H.; Yu, X.; Ding, Z.; Zhang, Y.; Qiu, K.; Li, J.; Zhang, L.; Wang, B. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geol. Bull. China 2022, 41, 903–935. [Google Scholar]
- Yang, L.; Wei, Y.; Wang, S.; Zhang, L.; Ju, L.; Li, R.; Gao, X.; Qiu, K. A preliminary study of reserve estimate and resource potential assessment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2022, 38, 9–22. [Google Scholar]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Sai, S.X.; Deng, J.; Qiu, K.F.; Miggins, D.P.; Zhang, L. Textures of auriferous quartz-sulfide veins and 40Ar/39Ar geochronology of the Rushan gold deposit: Implications for processes of ore-fluid infiltration in the eastern Jiaodong gold province, China. Ore Geol. Rev. 2020, 117, 103254. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Deng, J.; Zhu, R.; Mathieu, L.; Sai, S.X.; Sha, W.J. Exhuming and preserving epizonal orogenic Au-Sb deposits in rapidly uplifting orogenic settings. Tectonics 2022, 41, e2021TC007165. [Google Scholar] [CrossRef]
- Zhao, G.; Zhai, M. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- He, D.Y.; Qiu, K.F.; Yu, H.C.; Huang, Y.Q.; Ding, Z.J.; Shen, Y. Petrogenesis of the Early Cretaceous trachy-dacite from Mashan in the Jiaolai Basin, North China Craton. Acta Petrol. Sin. 2020, 36, 3705–3720. [Google Scholar]
- Yang, K.F.; Fan, H.R.; Santosh, M.; Hu, F.F.; Wilde, S.A.; Lan, T.G.; Lu, L.N.; Liu, Y.S. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 2012, 146, 112–127. [Google Scholar] [CrossRef]
- Wei, Y.J.; Yang, L.; Qiu, K.F.; Wang, S.; Ren, F.; Dai, Z.; Li, D.; Shan, W.; Li, Z.; Wang, J. Geology, mineralogy and pyrite trace elements constraints on gold mineralization mechanism at the giant Dayingezhuang gold deposit, Jiaodong Peninsula, China. Ore Geol. Rev. 2022, 148, 104992. [Google Scholar] [CrossRef]
- Song, M.C.; Lin, S.Y.; Yang, L.Q.; Song, Y.; Ding, Z.; Li, J.; Li, S.; Zhou, M. Metallogenic model of Jiaodong Peninsula gold deposits. Miner. Depos. 2020, 39, 215–236. [Google Scholar]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Long, Z.Y.; Qiu, K.F.; Santosh, M.; Yu, H.C.; Jiang, X.Y.; Zou, L.Q.; Tang, D.W. Fingerprinting the metal source and cycling of the world’s largest antimony deposit in Xikuangshan, China. Geol. Soc. Am. Bull. 2022; online. [Google Scholar] [CrossRef]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40 Ar/39 Ar standard MMhb. Contrib. Mineral. Petrol. 2006, 151, 615. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Ludwig, K. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel (p. 39). Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 70. [Google Scholar]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Kusebauch, C.; John, T.; Whitehouse, M.J.; Klemme, S.; Putnis, A. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim. Cosmochim. Acta 2015, 170, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Y.; Cawood, P.A.; Xu, W.L.; Zhang, X.M.; Tang, J.; Li, Y.; Sun, Z.X.; Xu, T. In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt: A window into petrogenesis. Geochim. Cosmochim. Acta 2021, 317, 552–573. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Belousova, E.; Walters, S.; Griffin, W.; O’reilly, S. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust. J. Earth Sci. 2001, 48, 603–619. [Google Scholar] [CrossRef]
- Li, Z.; Duan, D.; Jiang, S.; Ma, Y.; Yuan, H. In situ analysis of major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit, Edong ore district: Implications for petrogenesis and mineralization. J. Earth Sci. 2018, 29, 295–306. [Google Scholar] [CrossRef]
- Harlov, D.E.; Förster, H.-J. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. Am. Mineral. 2003, 88, 1209–1229. [Google Scholar] [CrossRef]
- Barth, T.F. The feldspar geologic thermometers. Neues Jahrb. Für Mineral. 1951, 82, 143–154. [Google Scholar]
- Qiu, K.F.; Yu, H.C.; Gou, Z.Y.; Liang, Z.L.; Zhang, J.L.; Zhu, R. Nature and origin of Triassic igneous activity in the Western Qinling Orogen: The Wenquan composite pluton example. Int. Geol. Rev. 2018, 60, 242–266. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Ladenburger, S.; Marks, M.A.; Upton, B.; Hill, P.; Wenzel, T.; Markl, G. Compositional variation of apatite from rift-related alkaline igneous rocks of the Gardar Province, South Greenland. Am. Mineral. 2016, 101, 612–626. [Google Scholar] [CrossRef]
- Gao, Y.J.; Zhang, Y.M.; Yan, P.K. Study of ore-controlling conditions and ore-forming type of Tudui gold deposit in Haiyang Shandong. J. Liaoning Univ. Technol. 2006, 26, 239–242. [Google Scholar]
- Feng, B.; Li, H.M.; Wei, M.L.; Tao, X.; Zhang, W.S. Chronological study on Muniushan pluton in Guocheng District of Jiaodong Peninsula and its geological significance. Gold 2013, 34, 24–28. [Google Scholar]
- Xu, H.; Wang, L.; Chen, C.; Wang, X.; Liu, J.; Wu, Q. Condition of geochemistry and zircon U-Pb geochronology for monzonitic granite in Muniushan, Guocheng, Shandong. Glob. Geol. 2015, 34, 927–937. [Google Scholar]
- Cheng, S.B.; Liu, Z.J.; Wang, Q.F.; Feng, B.; Wei, X.L.; Liu, B.Z.; Qin, L.Y.; Zhao, B.J.; Shui, P.; Xu, L. SHRIMP zircon U-Pb dating and Hf isotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China: Implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambr. Res. 2017, 301, 36–48. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Wang, F.; Zhou, T. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China. Ore Geol. Rev. 2020, 128, 103886. [Google Scholar] [CrossRef]
- Maruyama, S.; Liou, J.; Terabayashi, M. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 1996, 38, 485–594. [Google Scholar] [CrossRef]
- Brown, M. Metamorphic conditions in orogenic belts: A record of secular change. Int. Geol. Rev. 2007, 49, 193–234. [Google Scholar] [CrossRef]
- Miyashiro, A. Evolution of metamorphic belts. J. Petrol. 1961, 2, 277–311. [Google Scholar] [CrossRef]
- Miyashiro, A. Paired and unpaired metamorphic belts. Tectonophysics 1973, 17, 241–254. [Google Scholar] [CrossRef]
- Zhou, T.; Qiu, K.F.; Wang, Y.; Yu, H.C.; Hou, Z.L. Apatite Eu/ Y-Ce discrimination diagram: A big data based approach for provenance classification. Acta Petrol. Sin. 2022, 38, 291–299. [Google Scholar]
- Wang, Y.; Qiu, K.F.; Müller, A.; Hou, Z.L.; Zhu, Z.H.; Yu, H.C. Machine Learning Prediction of Quartz Forming-Environments. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021925. [Google Scholar] [CrossRef]
- Lai, S.; Qin, J. Zircon U-Pb dating and Hf isotopic composition of the diabase dike swarm from Sanchazi area, Mianlue suture: Chronology evidence for the Paleo-Tethys oceanic crust subduction. J. Earth Sci. Environ. 2010, 32, 27–33. [Google Scholar]
- Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost paleo-Tethys. Gondwana Res. 2015, 27, 244–257. [Google Scholar] [CrossRef]
- Dai, L.Q.; Zheng, F.; Zhao, Z.F.; Zheng, Y.F. Recycling of Paleotethyan oceanic crust: Geochemical record from postcollisional mafic igneous rocks in the Tongbai-Hong’an orogens. Bulletin 2017, 129, 179–192. [Google Scholar] [CrossRef]
- Wu, Y.B.; Gao, S.; Zhang, H.F.; Yang, S.H.; Jiao, W.F.; Liu, Y.S.; Yuan, H.L. Timing of UHP metamorphism in the Hong’an area, western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition. Contrib. Mineral. Petrol. 2008, 155, 123–133. [Google Scholar] [CrossRef]
- Cheng, H.; Vervoort, J.D.; Dragovic, B.; Wilford, D.; Zhang, L. Coupled Lu-Hf and Sm-Nd geochronology on a single eclogitic garnet from the Huwan shear zone, China. Chem. Geol. 2018, 476, 208–222. [Google Scholar] [CrossRef]
- Zhou, L.G.; Xia, Q.X.; Zheng, Y.F.; Chen, R.X.; Hu, Z.; Yang, Y. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Res. 2015, 28, 348–370. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Jahn, B.M. Tectonic evolution of the Tongbai-Hong’an orogen in central China: From oceanic subduction/accretion to continent-continent collision. Sci. China Earth Sci. 2015, 58, 1477–1496. [Google Scholar] [CrossRef]
- Oh, C.W.; Lee, B.C. The relationship between systematic metamorphic patterns and collisional processes along the Qinling-Sulu-Odesan collisional belt between the North and South China Cratons. Geo. Soc. Lond. Spec. Pub. 2019, 478, 449–475. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Pirajno, F.; Zhang, P.C.; Dong, W.Q. Revisiting Phanerozoic evolution of the Qinling Orogen (East Tethys) with perspectives of detrital zircon. Gondwana Res. 2022, 103, 426–444. [Google Scholar] [CrossRef]
- Cheng, H.; King, R.L.; Nakamura, E.; Vervoort, J.D.; Zheng, Y.F.; Ota, T.; Wu, Y.B.; Kobayashi, K.; Zhou, Z.Y. Transitional time of oceanic to continental subduction in the Dabie orogen: Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating. Lithos 2009, 110, 327–342. [Google Scholar] [CrossRef]
- Cheng, H.; DuFrane, S.A.; Vervoort, J.D.; Nakamura, E.; Zheng, Y.F.; Zhou, Z. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen. Am. Mineral. 2010, 95, 1214–1223. [Google Scholar] [CrossRef]
- Fu, B.; Zheng, Y.F.; Touret, J.L. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem. Geol. 2002, 187, 107–128. [Google Scholar] [CrossRef]
- Sun, W.; Williams, I.; Li, S. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: Evidence for protracted convergence of the North and South China blocks. J. Metamorph. Geol. 2002, 20, 873–886. [Google Scholar] [CrossRef]
- Liu, X.; Jahn, B.M.; Liu, D.; Dong, S.; Li, S. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications. Tectonophysics 2004, 394, 171–192. [Google Scholar] [CrossRef]
- Jahn, B.M.; Liu, X.; Yui, T.F.; Morin, N.; Coz, M. High-pressure/ultrahigh-pressure eclogites from the Hong’an Block, East-Central China: Geochemical characterization, isotope disequilibrium and geochronological controversy. Contrib. Mineral. Petrol. 2005, 149, 499–526. [Google Scholar] [CrossRef]
- Peters, T.J.; Ayers, J.C.; Gao, S.; Liu, X.M. The origin and response of zircon in eclogite to metamorphism during the multi-stage evolution of the Huwan Shear Zone, China: Insights from Lu-Hf and U-Pb isotopic and trace element geochemistry. Gondwana Res. 2013, 23, 726–747. [Google Scholar] [CrossRef]
- Cho, D.L.; Lee, S.R.; Armstrong, R. Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos 2008, 105, 191–200. [Google Scholar] [CrossRef]
- Zhang, L.X.; Liu, P.H.; Wang, Y.L.; Zhou, W.P.; Zhang, Y.J.; Zhang, C.H. Depositional timing and provenance characteristics of the Cretaceous insishan formation in the Shewopo Area, Jiaolai Basin: New evidence from Detrital Zircon U-Pb dating and REE composition. Earth Sci. 2021, 46, 1119–1132. [Google Scholar]
- Peng, N.; Liu, Y.Q.; Kuang, H.W.; Xu, H.; Zhang, P.; Chen, J.; An, W.; Wang, N.S. Provenance of early cretaceous Laiyang group in Jiaolai basin and its significance. Geol. China 2015, 42, 1793–1810. [Google Scholar]
- Zhang, P.; Kuang, H.W.; Liu, Y.Q.; Peng, N.; Xu, H.; Wang, M.W.; An, W.; Wang, N.S. Conglometates on the base Linsishan Formation of the middle early cretaceous in Jiaolai Basin of eastern Shandong, and implications for basin evolution. Acta Sedimentol. Sin. 2016, 34, 15–32. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; An, M.; Jiang, X.; Zhi, C.; Tan, H. Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition. Minerals 2022, 12, 1294. https://doi.org/10.3390/min12101294
Sun K, An M, Jiang X, Zhi C, Tan H. Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition. Minerals. 2022; 12(10):1294. https://doi.org/10.3390/min12101294
Chicago/Turabian StyleSun, Kefei, Maoguo An, Xiangyong Jiang, Chenglong Zhi, and Hongjie Tan. 2022. "Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition" Minerals 12, no. 10: 1294. https://doi.org/10.3390/min12101294
APA StyleSun, K., An, M., Jiang, X., Zhi, C., & Tan, H. (2022). Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition. Minerals, 12(10), 1294. https://doi.org/10.3390/min12101294