Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece)
Abstract
:1. Introduction
2. Geological Outline
3. Materials and Methods
4. Results
4.1. Mineralogical Characteristics of Fe-Mn Mineralization
4.1.1. Iron-Manganese Mineralization at Grammatiko
4.1.2. Supergene Mineralization at Grammatiko
4.1.3. Legrena (Western Lavrion Area)
4.1.4. Varnavas
4.1.5. Milos
4.2. Geochemical Characteristics
5. Discussion
5.1. Metallogenetic Signatures
5.2. Bio-Mineralization
5.3. Genetic Significance of Fossilized Micro-Organisms Coated by Sodium Chloride
5.4. Implications of Micro-Organisms to the Mn Recovery
5.5. Environmental Implications
6. Conclusions
- The presented chemical composition of ores from Attica (Grammatiko, Legrena of W. Lavrion) belongs to the Fe-Mn type of deposit, whereas those from Evia and Milos are Mn-Fe ores and contain higher Ba content;
- The studied deposits have exhibit low Cr, Co, V, Ni, Mo, and Cd values, while Ba, As, W, Cu, Pb, and Zn content are remarkably variable. The Mn-Fe deposits of Milos exhibited the highest tungsten (W) content;
- The positive trend between MnO and W coupled with the negative trend between MnO and Fe2O3 suggest the preference of W to Mn-minerals;
- The occurrence of abundant bacterio-morphic Fe-Mn-oxides/hydroxides is a common feature within Mn-Fe deposits in the areas of Varnavas and Milos Island and in Fe-Mn deposits in Legrena valley, which may reflect the catalytic role of micro-organisms in redox reactions that govern the formation of those Mn-Fe and Fe-Mn mineral phases;
- The presence of micro-organisms in Fe-Mn mineralization, reflecting the presence of organic matter, suggests a shallow environment for their deposition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinecke, T.; Okrusch, M.; Richter, P. Geochemistry of ferromanganoan metasediments from the island of Andros, Cycladic blueschist belt, Greece. Chem. Geol. 1985, 53, 249–278. [Google Scholar] [CrossRef]
- Dando, P.R.; Thomm, M.; Arab, H.; Brehmer, M.; Hooper, L.; Jochimsen, B.; Schlesner, H.; Stöhr, R.; Miquel, J.; Fowler, S.W. Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic Volcanic Arc). Cah. Biol. 1999, 39, 369–372. [Google Scholar]
- Dando, P.R.; Aliani, S.; Arab, H.; Bianchi, C.N.; Brehmer, M.; Cocito, S.; Fowlers, S.W.; Gundersen, J.; Hooper, L.E.; Kölbh, R.; et al. Hydrothermal studies in the Aegean Sea. Phys. Chem. Earth B. Hydrol. Oceans Atmos 2000, 25, 1–8. [Google Scholar] [CrossRef]
- Hein, J.R.; Stamatakis, G.M.; Dowling, S.J. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece. Trans. Inst. Min. Metall. Sect. B 2000, 109, 67–76. [Google Scholar] [CrossRef]
- Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J. Geophys. Res. 2008, 113, B08S14. [Google Scholar] [CrossRef] [Green Version]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Alfieris, D.; Voudouris, P.; Spry, P.G. Shallow submarine epithermal Pb-Zn-Cu-Au-Ag-Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints. Ore Geol. Rev. 2013, 53, 159–180. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Glasby, G.P.; Papavassiliou, C.T.; Boulegue, J. Nature and origin of the Vani manganese deposit, Milos, Greece: An overview. Ore Geol. Rev. 2001, 18, 181–209. [Google Scholar] [CrossRef]
- Kilias, S.P.; Naden, J.; Cheliotis, I.; Shepherd, T.J.; Constandinidou, H.; Crossing, J.; Simos, I. Epithermal gold mineralization in the active Aegean volcanic arc: The Profitis Ilias deposit, Milos Island, Greece. Miner. Depos. 2001, 36, 32–44. [Google Scholar] [CrossRef]
- Glasby, G.P.; Papavassiliou, C.T.; Mitsis, J.; Valsami-Jones, E.; Liakopoulos, A.; Renner, R.M. The Vani manganese deposit, Milos Island, Greece: A fossil stratabound Mn-Ba-Pb-Zn-As-Sb-W-rich hydrothermal deposit. In Developments in Volcanology; Fytikas, M., Vougioukalakis, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 255–288. [Google Scholar] [CrossRef]
- Papavassileiou, K.; Voudouris, P.; Kanellopoulos, C.; Glasby, G.; Alfieris, D.; Mitsis, I. New geochemical and mineralogical constraints on the genesis of the Vani hydrothermal manganese deposit at NW Milos Island, Greece: Comparison with the Aspro Gialoudi deposit and implications for the formation of the Milos manganese mineralization. Ore Geol. Rev. 2017, 80, 594–611. [Google Scholar] [CrossRef]
- Sievert, S.M.; Brinkhoff, T.; Muyzer, G.; Ziebis, W.; Kuever, J. Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 1999, 65, 3834–3842. [Google Scholar] [CrossRef] [Green Version]
- Chi Fru, E.; Ivarsson, M.; Kilias, S.P.; Bengtson, S.; Belivanova, V.; Marone, F.; Fortin, D.; Broman, C.; Stampanoni, M. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Nat. Commun. 2013, 4, 2050. [Google Scholar] [CrossRef] [Green Version]
- Giovannelli, D.; d’ Errico, G.; Manini, E.; Yakimov, M.; Vetriani, C. Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Front. Microbiol. 2013, 4, 184. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, L.E. Geomicrobiology, 4th ed.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Jackson, D.D. The precipitation of iron, manganese, and aluminum by bacterial action. J. Soc. Chem. Ind. 1901, 21, 681–684. [Google Scholar]
- Cahyani, V.R.; Murase, J.; Ishibashi, E.; Asakawa, S.; Kimura, M. Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biol. Fert. Soils 2009, 45, 337–346. [Google Scholar] [CrossRef]
- Nealson, K.H. The manganese oxidizing bacteria. In The Prokaryotes, Proteobacteria: Alpha and Beta Subclasses, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, E., Stackebrandt, K.H., Eds.; Springer: New York, NY, USA, 2006; Volume 5, pp. 222–231. [Google Scholar] [CrossRef]
- Ghosh, S.; Mohanty, S.; Nayak, S.; Sukla, L.B.; Das, A.P. Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. J. Basic Microbiol. 2016, 56, 254–262. [Google Scholar] [CrossRef]
- Chi Fru, E.; Kilias, S.; Ivarsson, M.; Rattray, J.E.; Gkika, K.; McDonald, I.; He, Q.; Broman, C. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece. Solid Earth 2018, 9, 573–598. [Google Scholar] [CrossRef] [Green Version]
- Kampouroglou, E.E. Investigation of Contamination at the Carbonic Basin in Varnavas, Attica from Arsenic and Heavy Metals and Their Source of Origin. Master’s Thesis, National University of Athens, Athens, Greece, 2011. (In Greek). [Google Scholar]
- Kampouroglou, E.; Economou-Eliopoulos, M. Assessment of arsenic and associated metals in the soil-plant-water system in Neogene basins of Attica, Greece. Catena 2017, 150, 206–222. [Google Scholar] [CrossRef]
- Bonneau, M. Correlation of the Hellenic Nappes in the south-east Aegean and their tectonic reconstruction. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Eds.; Geological Society: London, UK, 1984; Volume 17, pp. 517–527. [Google Scholar] [CrossRef]
- Dürr, S.; Altherr, R.; Keller, J.; Okrusch, M.; Seidel, E. The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides; Closs, H., Roeder, D.H., Schmidt, K., Eds.; IUGS Report; Schweizerbart: Stuttgart, Germany, 1978; Volume 38, pp. 455–477. [Google Scholar]
- Altherr, R.; Kreuzer, H.; Wendt, I.; Lenz, H.; Wagner, G.A.; Keller, J.; Harre, W.; Höhndorf, A.A. Late Oligocene/Early Miocene high temperature belt in the Attic–Cycladic belt in the Attic–Cycladic crystalline complex (SE Pelagonian, Greece). Geol. Jahrb. 1982, 23, 97–164. [Google Scholar]
- Okrusch, M.; Bröcker, M. Eclogite facies rocks in the Cycladic Blueschist Belt, Greece: A review. Eur. J. Mineral. 1990, 2, 451–478. [Google Scholar] [CrossRef]
- Jolivet, L.; Menant, A.; Sternai, P.; Rabillard, A.; Arbaret, L.; Augier, R.; Laurent, V.; Beaudoin, A.; Grasemann, B.; Huet, B.; et al. The geological signature of a slab tear below the Aegean. Tectonophysics 2015, 659, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Bröcker, M.; Franz, L. The base of the Cycladic Blueschist Unit on Tinos Island (Greece) re-visited: Field relationships, phengite chemistry and Rb–Sr geochronology. Neues Jahrb. Mineral. Abh. 2005, 181, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Bröcker, M.; Franz, L. Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades, Greece): Results of a Rb–Sr study. Geol. Mag. 2006, 143, 609–620. [Google Scholar] [CrossRef]
- Stouraiti, C.; Pantziris, I.; Vasilatos, C.; Kanellopoulos, C.; Mitropoulos, P.; Pomonis, P.; Moritz, R.; Chiaradia, M. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences 2017, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Tomaschek, F.; Kennedy, A.K.; Villa, I.M.; Lagos, M.; Ballhaus, C. Zircons from Syros, Cyclades, Greece-Recrystallization and mobilization of zircon during high pressure metamorphism. J. Petrol. 2003, 44, 1977–2002. [Google Scholar] [CrossRef] [Green Version]
- Katzir, Y.; Matthews, A.; Garfunkel, Z.; Evans, B.W. Origin, HP/LT metamorphism and cooling of ophiolitic mélanges in southern Evia (NW Cyclades) Greece. J. Metamorph. Geol. 2000, 18, 699–718. [Google Scholar] [CrossRef]
- Baziotis, I.; Mposkos, E. Origin of metabasites from upper tectonic unit of the Lavrion area (SE Attica, Greece): Geochemical implications for dual origin with distinct provenance of blueschist and greenschist’s protoliths. Lithos 2011, 126, 161–173. [Google Scholar] [CrossRef]
- Stouraiti, C.; Soukis, K.; Voudouris, P.; Mavrogonatos, C.; Lozios, S.; Lekkas, S.; Beard, A.; Strauss, H.; Palles, D.; Baziotis, I.; et al. Silver-rich sulfide mineralization in the northwestern termination of the Western Cycladic Detachment System, at Agios Ioannis Kynigos, Hymittos Mt. (Attica, Greece): A mineralogical, geochemical and stable isotope study. Ore Geol. Rev. 2019, 111, 1–16. [Google Scholar] [CrossRef]
- Diamantopoulos, A. Non-coaxial stretching deformation dominating the Upper Structural Plate of the metamorphic core complex of Attica (Internal Hellenides, Central Greece). In Proceedings of the XVIIIth Congress of the Carpathian-Balkan Geological Association, Belgrade, Serbia, 3–6 September 2006; pp. 101–105. [Google Scholar]
- Ioakim, C.; Rondoyanni, T.; Mettos, A. The Miocene basins of Greece (Eastern Mediterranean) from a paleoclimatic perspective. Rev. Paleobiol. 2005, 24, 735–748. [Google Scholar]
- Lozios, S. Tectonic analysis of metamorphic formations of Northeastern Attica. Ph.D. Thesis, National and Kapodistrian University of Athens (NKUA), Athens, Greece, 1993. (In Greek). [Google Scholar]
- Papanikolaou, D.; Royden, L.H. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene–Quaternary normal faults-or what happened at Corinth? Tectonics 2007, 26, TC5003. [Google Scholar] [CrossRef]
- Papanikolaou, D.; Papanikolaou, I. Geological, geomorphological and tectonic structure of the NE Attica and seismic hazard implications for the northern edge of the Athens plain. Bull. Geol. Soc. Greece 2007, 40, 425–438. [Google Scholar] [CrossRef]
- Skarpelis, N. Geodynamics and evolution of the Miocene mineralization in the Cycladic-Pelagonian Belt, Hellenides. Bull. Geol. Soc. Greece 2002, 34, 2191–2209. [Google Scholar] [CrossRef] [Green Version]
- Skarpelis, N. The Lavrion deposit (SE Attica, Greece): Geology, mineralogy and minor elements chemistry. Neu Jb. Mineral. Abh. 2007, 183, 227–249. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.; Bonsall, T.; Tarkian, M.; Economou-Eliopoulos, M. Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Miner. Petrol. 2008, 93, 79–110. [Google Scholar] [CrossRef]
- Bonsall, T.A.; Spry, P.G.; Voudouris, P.; Tombros, S.; Seymour, K.; Melfos, V. The Geochemistry of Carbonate-Replacement Pb-Zn-Ag Mineralization in the Lavrion District, Attica, Greece: Fluid Inclusion, Stable Isotope, and Rare Earth Element Studies. Econ. Geol. 2011, 106, 619–651. [Google Scholar] [CrossRef]
- Berger, A.; Schneider, D.A.; Grasemann, B.; Stockli, D. Footwall mineralization during Late Miocene extension along the West Cycladic Detachment System, Lavrion, Greece. Terra Nova 2013, 25, 181–191. [Google Scholar] [CrossRef]
- Spry, P.; Mathur, R.; Bonsall, T.; Voudouris, P.; Melfos, V. Re-Os isotope evidence for mixed source components in carbonate-replacement Pb-Zn-Ag deposits in the Lavrion district, Attica, Greece. Miner. Pet. 2014, 108, 503–513. [Google Scholar] [CrossRef]
- Ducoux, M.; Branquet, Y.; Jolivet, L.; Arbaret, L.; Grasemann, B.; Rabillard, A.; Gumiaux, C.; Drufin, S. Synkinematic skarns and fluid drainage along detachments: The West Cycladic Detachment System on Serifos Island (Cyclades, Greece) and its related mineralization. Tectonophysics 2017, 695, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, D.; Lekkas, E.; Syskakis, D. Tectonic analysis of the geothermal field of Milos Island. Bull. Geol. Soc. Greece 1990, 24, 27–46. [Google Scholar]
- Bekker, A.; Slack, F.J.; Planavsky, N.; Krapež, B.; Hofmann, A.; Konhauser, O.K.; Rouxel, J.O. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Econ Geol 2010, 105, 467–508. [Google Scholar] [CrossRef] [Green Version]
- Marinos, G.P.; Petrascheck, W.E. Laurium. In Geological and Geophysical Research; Institute for Geology and Subsurface Research: Athens, Greece, 1956; Volume 4. [Google Scholar]
- Skarpelis, N.; Argyraki, A. Geology and origin of supergene ore at the Lavrion Pb-Ag-Zn deposit, Attica, Greece. Resour. Geol. 2008, 59, 1–14. [Google Scholar] [CrossRef]
- Kampouroglou, E.; Economou-Eliopoulos, M. Assessment of the environmental impact by As and heavy metals in lacustrine travertine limestone and soil in Attica, Greece: Mapping of potentially contaminated sites. Catena 2016, 139, 137–166. [Google Scholar] [CrossRef]
- Plimer, I. Milos Geologic History; Koan Publishing House: Athens, Greece, 2000. [Google Scholar]
- Skarpelis, N.; Koutles, T. Geology of epithermal mineralization of the NW part of Milos island, Greece. In Proceedings of the 5th Inthernational Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, 14–20 April 2004. [Google Scholar]
- Stewart, A.L.; McPhie, J. Facies architecture and Late Pliocene—Pleistocene evolution of a felsic volcanic island, Milos, Greece. Bull. Volcanol. 2006, 68, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Kilias, S.P. Microbial-Mat Related Structures in the Quaternary Cape Vani Manganese Oxide(-Barite) Deposit, NW Milos Island-Greece. In Microbial Mats in Siliciclastic Depositional Systems Through Time; Noffke, N., Chafetz, H., Eds.; SEPM (Society for Sedimentary Geology) Special Publication: Broken Arrow, OK, USA, 2012; Volume 101, pp. 97–110. [Google Scholar]
- Chi Fru, E.; Ivarsson, M.; Kilias, S.P.; Frings, P.J.; Hemmingsson, C.; Broman, C.; Bengtson, S.; Chatzitheodoridis, E. Biogenicity of an Early Quaternary iron formation, Milos Island, Greece. Geobiology 2015, 13, 225–244. [Google Scholar] [CrossRef]
- Galanopoulos, E.; Charmatzis, C. Mineralogical Study of Metamorphosed Manganoan Sediments from the Varnavas Area in Attica, and Their Relation to Similar Horizons in South Evia and Andros. Island. Greece. Bachelor’s Thesis, National and Kapodistrian University of Athens (NKUA), Athens, Greece, 2007. [Google Scholar]
- Wu, S.F.; You, C.F.; Lin, Y.P.; Valsami-Jones, E.; Baltatzis, E. New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece). J. Volcanol. Geoth. Res. 2016, 310, 58–71. [Google Scholar] [CrossRef]
- Bonatti, E.; Kraemer, T.; Rydell, H. Classification and genesis of submarine iron manganese deposits. In Ferromanganese Deposits on the Ocean Floor; Horn, D., Ed.; National Science Foundation: Washington, DC, USA, 1972; pp. 149–166. [Google Scholar]
- Corliss, J.B.; Dymond, J. Nazca plate metalliferous sediments: I. Elemental distribution patterns in surface samples. Trans. Am. Geophys. Union 1975, 56, 445. [Google Scholar]
- Toth, J.R. Deposition of submarine crusts rich in manganese and iron. Geol. Soc. Am. Bull. 1980, 91, 44–55. [Google Scholar] [CrossRef]
- Ghikas, J. Manganese Rich Rocks of Southern Evia. Bachelor’s Thesis, National and Kapodistrian University of Athens (NKUA), Athens, Greece, 2014; p. 33. [Google Scholar]
- Scheffer, C.; Tarantola, A.; Vanderhaeghe, O.; Voudouris, P.; Rigaudier, T.; Photiades, A.; Morin, D.; Alloucherie, A. The Lavrion Pb-Zn-Fe-Cu-Ag detachment-related district (Attica, Greece): Structural control on hydrothermal flow and element transfer-deposition. Tectonophysics 2017, 717, 607–627. [Google Scholar] [CrossRef]
- Hansel, M.C.; Learman, R.D. Geomicrobiology of Manganese. In Ehrlich’s Geomicrobiology, 6th ed.; Ehrlich, L.H., Dianne, K., Newman, D.K., Kappler, A., Eds.; CRC Press Taylor & Francis Group: Boca Raton FL, USA, 2015; pp. 401–452. [Google Scholar]
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Manganese and the Evolution of Photosynthesis. Orig. Life Evol. Biosph. 2015, 45, 351–357. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I.; Fintor, K.; Horváth, H.; Pál-Molnár, E.; Biondi, J.C. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Front. Microbiol. 2019, 10, 2731. [Google Scholar] [CrossRef]
- Kilias, S.P.; Ivarsson, M.; Chi Fru, E.C.; Rattray, J.E.; Gustafsson, H.; Naden, J.; Detsi, K. Precipitation of Mn oxides in quaternary microbially induced sedimentary structures (MISS), Cape Vani paleo-hydrothermal vent field, Milos, Greece. Minerals 2020, 10, 536. [Google Scholar] [CrossRef]
- Gracheva, M.; Homonnay, Z.; Kovács, K.; Kende Attila Béres, K.A.; Biondi, J.C.; Yu, W.; Kovács Kis, V.; Gyollai, I.; Polgári, M. Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages. Ore Geol. Rev. 2021, 134, 104124. [Google Scholar] [CrossRef]
- Lowenstam, A.H.; Weiner, S. On Biomineralization; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Pósfai, M.; Buseck, P.R.; Bazylinski, D.A.; Frankel, R.B. Iron sulfides from magnetotactic bacteria: Structure, compositions, and phase transitions. Am. Min. 1998, 83, 1469–1481. [Google Scholar] [CrossRef]
- Haferburg, G.; Kothe, E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef]
- Navrotsky, A.; Mazeina, L.; Majzslan, J. Size driven structural and thermodynamic complexity in iron oxides. Science 2008, 319, 1635–1638. [Google Scholar] [CrossRef]
- Laskou, M.; Economou-Eliopoulos, M. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J. Geochem. Explor. 2007, 93, 67–77. [Google Scholar] [CrossRef]
- Laskou, M.; Economou-Eliopoulos, M. Bio-mineralization and potential biogeochemical processes in bauxite deposits: Genetic and ore quality significance. Miner. Petrol. 2013, 107, 471–486. [Google Scholar] [CrossRef]
- Ivarsson, M.; Kilias, S.P.; Broman, C.; Neubeck, A.; Drake, H.; Chi Fru, E.; Bengtson, S.; Naden, J.; Detsi, K.; Whitehouse, M.J. Exceptional preservation of fungi as H2-bearing fluid inclusions in an early Quaternary paleohydrothermal system at Cape Vani, Milos, Greece. Minerals 2019, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- Polgári, M.; Hein, J.R.; Vigh, T.; Szabó-Drubina, M.; Fórizs, I.; Bíró, L.; Müller, A.; Tóth, A.L. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol. Rev. 2012, 47, 87–109. [Google Scholar] [CrossRef]
- Ohfuji, H.; Rickard, D. Experimental syntheses of framboids. A review. Earth Sci. Rev. 2005, 71, 147–170. [Google Scholar] [CrossRef]
- Vasilatos, C.; Economou-Eliopoulos, M. Fossilized Bacteria in Fe-Mn-Mineralization: Evidence from the Legrena Valley, W. Lavrion Mine (Greece). Minerals 2018, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Denner, E.B.M.; McGenity, T.J.; Busse, H.J.; Grant, W.D.; Wanner, G.; Stan-Lotter, H. Halococcus isalifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 1994, 44, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Gruber, C.; Legat, A.; Pfaffenhuemer, M.; Radax, C.; Weidler, G.; Busse, H.J.; Stan-Lotter, H. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 2004, 8, 431–439. [Google Scholar] [CrossRef]
- Stan-Lotter, H.; McGenity, T.J.; Legat, A.; Denner, E.B.M.; Glaser, K.; Stetter, K.O.; Wanner, G. Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 1999, 145, 3565–3574. [Google Scholar] [CrossRef] [Green Version]
- Stan-Lotter, H.; Pfaffenhuemer, M.; Legat, A.; Busse, H.J.; Radax, C.; Gruber, C. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int. J. Syst. Evol. Microbiol. 2002, 52, 1807–1814. [Google Scholar]
- Oren, A.; Kühl, M.; Karsten, U. An endoevaporitic microbial mat within a gypsum crust: Zonation of phototrophs, photopigments and light penetration. Mar. Ecol. Prog. Ser. 1995, 128, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Caffari, S.; Tibiletti, T.; Jennings, R.C.; Santabarbara, S. A comparison between plant Photosystem I and Photosystem II architecture and functioning. Curr. Protein Pept. Sci. 2014, 15, 296–331. [Google Scholar] [CrossRef]
- Das, A.P.; Ghosh, S.; Mohanty, S.; Sukla, L.B. Advances in Manganese Pollution and Its Bioremediation. In Environmental Microbial Biotechnology; Soil Biology; Sukla, L., Pradhan, N., Panda, S., Mishra, B., Eds.; Springer: Cham, Switzerland, 2015; Volume 45. [Google Scholar] [CrossRef]
- Su, H.; Liu, H.; Wang, F.; LÜ, X.; Wen, Y. Kinetics of reductive leaching of low grade pyrolusite with molasses alcohol waste water in H2SO4. Chin. J. Chem. Eng. 2010, 18, 730–735. [Google Scholar] [CrossRef]
- Srichandan, H.; Kim, D.J.; Gahan, C.S.; Akcil, A. Microbial extraction metal values from spent catalyst: Mini review. Chapter 11; In Advances in Biotechnology; Thatoi, H.N., Ed.; Indian Publisher: New Delhi, India, 2013; pp. 225–239. [Google Scholar]
- Zhang, W.; Cheng, C. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy 2007, 89, 137–159. [Google Scholar] [CrossRef]
- Xiong, S.; Li, X.; Liu, P.; Hao, S.; Hao, F.; Yin, Z.; Liu, J. Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant. Miner. Eng. 2018, 125, 126–132. [Google Scholar] [CrossRef]
- Das, A.P.; Sukla, L.B.; Pradhan, N.; Nayak, S. Manganese biomining: A review. Bioresour Technol 2011, 102, 7381–7387. [Google Scholar] [CrossRef]
- Panda, S.; Biswal, A.; Mishra, S.; Panda, P.K.; Pradhan, N.; Mohapatra, U.; Sukla, L.B.; Mishra, B.K.; Akcil, A. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy. Hydrometallurgy 2015, 153, 98–105. [Google Scholar] [CrossRef]
- Begum, A. Concurrent removal and accumulation of Fe2+, Cd2+ and Cu2+ from waste water using aquatic macrophytes. Der. Pharma Chem. 2009, 1, 219–224. [Google Scholar]
- Giannatou, S.; Vasilatos, C.; Mitsis, I.; Koukouzas, N.; Itskos, G.; Stamatakis, M.G. Reduction of toxic element mobility in acid mine soils by zeolitic amendments. Bull. Geol. Soc. Greece 2016, 50, 2127–2136. [Google Scholar] [CrossRef]
- Mohan, K.; Syed Shafi, S. Removal of cadmium from the aqueous solution using chitin/polyethylene glycol binary blend. Der. Pharm. Lett. 2013, 5, 62–69. [Google Scholar]
- Zavala, Y.J.; Duxbury, J.M. Arsenic in rice: Estimating normal levels of total arsenic in rice grain. Environ. Sci. Technol. 2008, 42, 3856–3860. [Google Scholar] [CrossRef]
- Lin, C.Y.; Negev, I.; Eshel, G.; Banin, A. In Situ Accumulation of Copper, Chromium, Nickel, and Zinc in Soils Used for Long-term Waste Water Reclamation. J. Environ. Qual. 2008, 37, 1477–1487. [Google Scholar] [CrossRef]
- Quin, B.F.; Brooks, R.R. The tungsten contents of some plants from a mineralized area in New Zealand. N. Z. J. Sci. 1972, 15, 308–312. [Google Scholar]
- Quin, B.F.; Brooks, R.R. Tungsten concentrations in plants and soils as a means of detecting scheelite-bearing ore-badies in New Zealand. Plant Soil 1974, 41, 177–188. [Google Scholar] [CrossRef]
- Pyatt, F.B.; Pyatt, A.J. The bioaccumulation of tungsten and copper by organisms inhabiting metalliferous areas in North Queensland, Australia: An evaluation of potential health implications. J. Environ. Health Res. 2004, 3, 13–18. [Google Scholar]
- Wilson, B.; Pyatt, F.B. Bioavailability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Sci. Total Environ. 2006, 370, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Pyatt, F.B. Persistence and bioaccumulation of tungsten and associated heavy metals under different climatic conditions. Land Contam. Reclam. 2009, 17, 93–100. [Google Scholar] [CrossRef]
- Wilson, B.; Pyatt, F.B. Bioavailability of tungsten and associated metals in calcareous soils in the vicinity of an ancient metalliferous mine in the Corbieres area, Southwestern France. J. Toxicol. Environ. Health 2009, A72, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Heilmeier, H.; Hartung, W. Abscisic acid relations of plants grown on tungsten enriched substrates. Plant Soil 2007, 301, 37–49. [Google Scholar] [CrossRef]
- Bednar, A.J.; Boyd, R.E.; Jones, W.T.; McGrath, C.J.; Johnson, D.R.; Chappell, M.A.; Ringelberg, D.B. Investigations of tungsten mobility in soil using column tests. Chemosphere 2009, 75, 1049–1056. [Google Scholar] [CrossRef]
Grammatiko | Milos | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gsf1 | GSf10 | Gsf 1d | Gsf2 | Gsf4c | Gsf5 | Mil3 | Mil4 | Mil5 | |||
wt% | Coronadite | Hematite | Malachite | Hollandite | Barite | Pyrolusite | |||||
SiO2 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | 0.1 | n.d | ||
Fe2O3 | 1.16 | 1.7 | 96.6 | 98.7 | n.d | n.d | 12.1 | 0.2 | 4.1 | ||
Al2O3 | 0.5 | 0.7 | 0.2 | 0.3 | 0.5 | n.d | n.d | n.d | n.d | ||
MnO | 59.8 | 56.9 | n.d | n.d | n.d | n.d | 58.4 | 1.7 | 89.3 | ||
BaO | 1.2 | n.d | n.d | n.d | n.d | n.d | 14.1 | 63.1 | 4.4 | ||
MgO | 0.4 | n.d | n.d | n.d | n.d | n.d | n.d | 0.3 | n.d | ||
CaO | 0.6 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | ||
ZnO | n.d | n.d | n.d | n.d | n.d | n.d | 4.5 | n.d | 1.6 | ||
PbO | 27.4 | 31.8 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | ||
CuO | 1.1 | 1.9 | 1.5 | n.d | 69.9 | 69.3 | n.d | n.d | n.d | ||
As2O3 | n.d | 1.4 | n.d | n.d | 2.3 | n.d | n.d | n.d | n.d | ||
K2O | n.d | n.d | n.d | n.d | n.d | 0.7 | n.d | n.d | n.d | ||
SO3 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | 32.4 | n.d | ||
WO3 | n.d | n.d | n.d | n.d | n.d | n.d | 1.6 | 3.1 | 1.4 | ||
P2O5 | n.d | 0.3 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | ||
92.16 | 94.7 | 98.3 | 99.0 | 72.7 | 67.3 | 90.7 | 100.9 | 100.8 | |||
Cont | |||||||||||
Varnavas | |||||||||||
matrix | matrix | matrix | matrix | matrix | |||||||
wt% | Mn-mt | Mn-mt | Mn-mt | Mn-mt | mixed | Epidote | Epidote | Pyroxene | Pyroxene | K-Feldspar | Mg-Calcite |
SiO2 | 6.9 | 3.5 | 0.9 | 2.2 | 40.9 | 31.7 | 32.6 | 34.6 | 37.2 | 63.8 | n.d |
Fe2O3 | 76.2 | 82.1 | 90.1 | 84.8 | 1.3 | 17.3 | 18.2 | 8.2 | 8.8 | 0.5 | n.d |
Al2O3 | 4.3 | 2.1 | n.d | 1.4 | 4.7 | 15.5 | 14.5 | 1.6 | 0.9 | 18.1 | n.d |
MnO | 5.6 | 6.4 | 5.9 | 5.9 | n.d | 2.7 | 2.1 | 1.1 | 1.8 | 2.2 | n.d |
MgO | 0.8 | 1.4 | n.d | 1.7 | n.d | n.d | n.d | 1.8 | 1.2 | 1.1 | 8.7 |
CaO | 5.5 | 3.6 | 1.3 | 2.7 | 27.6 | 24.3 | 19.1 | 41.7 | 50.1 | n.d | 44.8 |
As2O3 | 1.2 | n.d | n.d | n.d | 20.1 | n.d | 1.3 | n.d | 0.8 | n.d | n.d |
K2O | 0.6 | 0.3 | n.d | n.d | n.d | 5.2 | 9.5 | 0.5 | 0.4 | 14.5 | n.d |
Total | 101.1 | 99.4 | 98.2 | 98.7 | 94.6 | 96.7 | 97.3 | 89.5 | 101.2 | 100.2 | 53.5 |
Cont | |||||||||||
Milos | Varnavas | ||||||||||
Si | n.d | n.d | n.d | 0.9 | 0.6 | 0.6 | |||||
Na | 38.9 | 36.7 | 39.3 | 38.2 | 40.2 | 40.6 | |||||
Cl | 58.3 | 57.7 | 53.5 | 59.1 | 57.4 | 56.7 | |||||
Pb | 2.2 | 1.2 | n.d | n.d | n.d | n.d | |||||
Mn | 0.6 | 1.6 | 2.5 | 2.6 | 2.1 | 2.1 | |||||
Fe | n.d | 0.5 | 0.7 | 0.4 | n.d | n.d | |||||
W | n.d | 1.2 | n.d | n.d | n.d | n.d | |||||
K | n.d | n.d | n.d | 0.3 | n.d | n.d | |||||
100.00 | 98.9 | 96 | 101.5 | 100.3 | 100.00 |
Grammatiko | Lavrion | Varnavas | S. Evia | Milos | Milos * | D. Limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 2 | Figure 3 | Figure 4 | Figure 5 | Figure 6 | |||||||||
Massive Mn-Ore | Super-Gene Ore | Fe-Mn Crust | Massive Fe-Mn Ore | Massive Mn-Ore | Mn-Ore | Massive Mn-Ore | Volcanclastic Sandstone | Mn-Ore n = 25 | |||||
ppm | G108C | G101A | G108A | LV1 | LV2 | Var.1 | Evia1 | Evia2 ** | Mil.V1 | Mil.V2 | Mil.V3 | ||
Mo | 20 | 0.7 | 14 | 6 | 4.5 | 26 | 12.0 | 0.7 | 0.5 | ||||
Cu | 1600 | 1.2 | >10,000 | 6.2 | 19.2 | 290 | 710 | 750 | 410 | 7.0 | 3.5 | 870 | 0.5 |
Ni | 12 | 1.6 | 2.6 | 24 | 140 | 3.9 | 48 | 39 | 6 | 6.9 | 2.2 | 0.5 | |
Co | 15 | 2.4 | 0.9 | 15 | 15 | 15 | 180 | 90 | 40 | 6 | 22 | 1.0 | |
Pb | 2850 | 21 | 7200 | 55 | 5.1 | 1590 | 30 | 1170 | 9200 | 14 | 21 | 9300 | 0.5 |
Zn | 3300 | 150 | 900 | 102 | 17 | 4090 | 140 | 110 | 6800 | 37 | 36 | 3200 | 5.0 |
Cr | 1 | <1 | <1 | 2 | 1.4 | 2 | 30 | 14 | <1 | 4 | 7 | 1.0 | |
Mn | >10,000 | >10,000 | 1650 | 2750 | 6500 | >10,000 | 375,000 | 170,000 | 360,900 | 150 | 55 | 300,000 | 5.0 |
As | 900 | 58 | 1600 | 100 | 13 | 1170 | 2 | 9 | 1500 | 60 | 240 | 1100 | 5.0 |
Sr | 120 | 110 | 19 | 110 | 18 | 640 | 690 | 1140 | 1140 | 160 | 70 | 1100 | 5.0 |
Cd | 12 | 1.6 | 61 | 0.4 | 0.5 | 4 | 3 | 1.5 | 6.8 | <0.5 | >0.5 | 0.5 | |
Sb | 1300 | 15 | 400 | 2.2 | 10 | 33 | 30 | 6 | 33 | 4.5 | 15 | 260 | 0.5 |
V | 3 | <2 | <2 | <2 | 2 | 36 | 110 | 11 | 35 | 84 | 90 | 10 | |
La | <1 | <1 | 1 | 5.1 | 5 | 35 | 36 | 18 | 36 | 14 | 12 | 22 | 0.5 |
Ba | 880 | 36 | 9 | 130 | 27 | 9900 | 620 | 21,600 | 90,600 | 320 | 910 | 5.0 | |
W | 12 | 8.4 | 0.2 | 65 | 55 | 70 | 20 | 38 | 110 | 23 | 190 | 580 | 0.5 |
Zr | <0.5 | <0.5 | <0.5 | <0.5 | <.5 | <5 | 11 | 21 | 21 | 110 | 60 | 34 | 0.5 |
Y | 17 | 20 | 60 | 57 | 21,600 | 15 | 8.5 | 8.1 | 20 | 0.5 | |||
% | |||||||||||||
Fe | 26.17 | >40.00 | 5.26 | 5.8 | 55 | 2.21 | 1.0 | 1.0 | 1.58 | 2.43 | 5.16 | 1.7 | 0.01 |
Al | <0.01 | 0.01 | 0.15 | 0.02 | 0.2 | 0.11 | 1.0 | 1.0 | 1.82 | 8.15 | 7.08 | 3.1 | 0.01 |
Ti | <0.001 | <0.001 | <0.001 | <0.001 | <.001 | 0.03 | 0.07 | 0.14 | 0.07 | 0.12 | 0.18 | 0.01 | 0.001 |
Mg | 0.08 | 0.1 | 0.04 | 3.4 | 0.04 | 0.05 | 0.32 | 0.44 | 0.1 | 0.57 | 0.03 | 0.24 | 0.01 |
Ca | 12.55 | 5.36 | 19.7 | 27.3 | 0.05 | 0.16 | 0.89 | 0.83 | 0.29 | 1.5 | 0.07 | 0.2 | 0.01 |
P | <0.01 | <0.01 | 0.03 | 0.02 | 0.03 | 0.02 | 0.2 | <0.01 | 0.02 | <0.01 | <0.01 | 0.01 | |
Na | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.17 | 0.1 | 0.01 | 0.31 | 2.36 | 0.21 | 1 | 0.01 |
K | 0.16 | <0.01 | 0.02 | 0.01 | 0.2 | 0.71 | 0.9 | 0.15 | 3.03 | 1.12 | 6.41 | 1.4 | 0.01 |
S | <0.05 | <0.05 | <0.05 | 0.06 | 0.05 | <0.1 | 0.09 | <0.05 | 0.13 | <0.05 | 1.46 | 0.05 | |
Symbols: * = Glasby et al (2005) [10]; ** = Gkikas (2014) [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilatos, C.; Kampouroglou, E.E.; Megremi, I.; Economou-Eliopoulos, M. Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece). Minerals 2022, 12, 1303. https://doi.org/10.3390/min12101303
Vasilatos C, Kampouroglou EE, Megremi I, Economou-Eliopoulos M. Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece). Minerals. 2022; 12(10):1303. https://doi.org/10.3390/min12101303
Chicago/Turabian StyleVasilatos, Charalampos, Evdokia E. Kampouroglou, Ifigeneia Megremi, and Maria Economou-Eliopoulos. 2022. "Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece)" Minerals 12, no. 10: 1303. https://doi.org/10.3390/min12101303
APA StyleVasilatos, C., Kampouroglou, E. E., Megremi, I., & Economou-Eliopoulos, M. (2022). Bio-Geochemical Processes: Insights from Fe-Mn Mineralization in the Aegean Sea (Greece). Minerals, 12(10), 1303. https://doi.org/10.3390/min12101303