Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes
Abstract
:1. Introduction
2. Materials and Methods
3. Mineralogical Characteristics
4. Geochemical Characteristics
5. Discussion
5.1. Dissolution and Bioaccumulation of Pt, Pd, and Rh
5.2. Health Risk
5.3. Bioaccessibility of Pt and Pd
5.4. Implications to the Green Economy
6. Conclusions
- The mean contents of 314 Pt, 509 Pd, and 23 Rh (all in μg/kg) in dust samples along highways in Athens are comparable to those in other countries, while in gully pots, on the Katechaki peripheral highway, Pt (2070 μg/kg) and Pd (1985 μg/kg) show the highest contents.
- With the exception of the samples from gully pots showing relatively high Pd and Pt contents, the calculated total frequency showed that from 51% to 70% of the samples fall in the range from 100 to 300 μg/kg for Pd and Pt, respectively.
- The calculation of the translocation factors showing that Pt, Rh, and Pd can migrate from soil to shoots suggests that plant/crop uptake is a possible pathway toward the food chain and human risk.
- Although the bioaccumulation factors for Pt, Pd, and Rh in the shoots of plants/crops are relatively low, their high bioaccumulation in roots, coupled with the use of Pd-rich catalysts since 2000, may highlight the need for special attention on their bioaccumulation in crops, growing in a subsurface environment.
- The cycling of precious metals includes (a) the release of emissions from catalytic converters into the air and dust as nano- and micro-particles, their oxidation in the soil environment, and their bioaccumulation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. A New Industrial Strategy for Europe. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions COM (2020) 102; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Lewicka, E.; Guzik, K.; Galos, K. On the Possibilities of Critical Raw materials Production from the EU’s Primary Sources. Resources 2021, 10, 50. [Google Scholar] [CrossRef]
- Naldrett, A.J. Secular variation of magmatic sulfide deposits and their source magmas. Econ. Geol. 2010, 105, 669–688. [Google Scholar] [CrossRef]
- Tarkian, M.; Stribrny, B. Platinum-group elements in porphyry copper deposits: A reconnaissance study. Mineral. Petrol. 1999, 65, 161–183. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M. Platinum-group element potential of porphyry deposits. In Exploration for Platinum-Group Element Deposits; Mungall, J.E., Ed.; Mineralogical Association of Canada: Quebec, QC, Canada, 2005; pp. 203–246. [Google Scholar]
- Eliopoulos, D.G.; Economou-Eliopoulos, M.; Zhelyaskova-Panayiotova, M. Critical factors controlling Pd and Pt potential in porphyry Cu–Au deposits:evidence from the Balkan Peninsula. Geosciences 2014, 4, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.F. Recovering platinum-group metals from autocatalysts. JOM 1988, 40, 40–44. [Google Scholar] [CrossRef]
- Li, J.; Pant, A.; Chin, C.F.; Ang, W.H.; Menard-Moyon, C.; Nayak, T.R.; Gibson, D.; Ramaprabhu, S.; Panczyk, T.; Bianco, A.; et al. In vivo bio-distribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1465–1475. [Google Scholar] [CrossRef]
- Zimmermann, S.; Alt, F.; Messerschmidt, J.; von Bohlen, A.; Taraschewski, H.; Sures, B. Biological availability of traffic related platinum-group elements (palladium, platinum and rhodium) and other metals to the zebramussel (Dreissena polymorpha) in water containing road dust. Environ. Toxicol. Chem. 2002, 21, 2713–2718. [Google Scholar] [CrossRef]
- Palacios, M.A.; Moldovan, M.; Gomez, M.M. The automobile catalyst as an important source of PGE in the environment. In Anthropogenic Platinum Group Element Emissions and Their Impact on Man and Environment; Zereini, F., Alt, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 3–14. [Google Scholar]
- Ely, J.C.; Neal, C.R.; Kulpa, C.F.; Schneegurt, M.A.; Seidler, J.A.; Jain, J.C. Implications of platinum-group element accumulation along U.S. roads from catalytic-converter attrition. Environ. Sci. Technol. 2001, 35, 3816–3822. [Google Scholar] [CrossRef]
- Savignan, L.; Faucher, S.; Chéry, P.; Lespes, G. Platinum group elements contamination in soils: Review of the current state. Chemosphere 2021, 271, 129517. [Google Scholar] [CrossRef]
- Whiteley, J.D.; Murray, F. Anthropogenic platinum group element (Pt, Pd and Rh) concentrations in road dusts and roadside soils from Perth, Western Australia. Sci. Total Environ. 2003, 317, 121–135. [Google Scholar] [CrossRef]
- Jackson, M.; Sampson, J.; Prichard, H. Platinum and palladium variations through the urban environment: Evidence from 11 sample types from Sheffield, UK. Sci. Total Environ. 2007, 385, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Economou-Eliopoulos, M.; Sfendoni, T. Environmental impact of Pt, Pd, Rh and Au from catalytic converters along roadsides: The case of Attica. In Proceedings of the XIX Congress of the Carpathian Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; Volume 100, pp. 47–54. [Google Scholar]
- Tsogas, G.Z.; Giokas, D.L.; Vlessidis, A.G.; Aloupi, M.; Angelidis, M.O. Survey of the Distribution and Time-Dependent Increase of Platinum-Group Element Accumulation Along Urban Roads in Ioannina (NW Greece). Water Air Soil Pollut. 2009, 201, 265–281. [Google Scholar] [CrossRef]
- Prichard, H.M.; Fisher, P.C. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment. Environ. Sci. Technol. 2012, 46, 3149–3154. [Google Scholar] [CrossRef] [PubMed]
- Birke, M.; Reimann, C.; Rauch, U.; De Vivo, B.; Halamić, J.; Klos, V.; Gosar, M.; Ladenberger, A. Distribution of Cadmium in European Agricultural and Grazing Land Soil. In Chemistry of Europe’s Agricultural Soils—Part B: General Background Information and Further Analysis of the GEMAS Data Set Geologisches Jahrbuch; Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., O’Connor, P., Eds.; Reihe B103, Schweizerbarth: Hannover, Germany, 2014; pp. 89–115. [Google Scholar]
- Leśniewska, B.A.; Godlewska-Zyłkiewicz, B.; Bocca, B.; Caimi, S.; Caroli, S.; Hulanicki, A. Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Białystok area (Poland): A pilot study. Sci. Total Environ. 2004, 321, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Dahlheimer, S.R.; Neal, C.; Fein, J.B. Potential Mobilization of Platinum-Group Elements by Siderophores in Surface Environmental. Environ. Sci. Technol. 2007, 41, 870–875. [Google Scholar] [CrossRef]
- Kińska, K.; Kowalska, I. Comparison of Platinum, Rhodium, and Palladium Bioaccumulation by Sinapis alba and their Influence on Phytochelatin Synthesis in Plant Tissues. Pol. J. Environ. Stud. 2019, 28, 1735–1740. [Google Scholar] [CrossRef]
- Berthelin, J. Microbial weathering processes in natural environments. In Physical and Chemical Weathering in Geochemical Cycles; Lerman, A., Meybeck, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 33–59. [Google Scholar]
- Colombo, C.; Oates, C.J.; Monhemius, A.J.; Plant, J.A. Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochem. Explor. Environ. Anal. 2008, 8, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Farago, M.E.; Kavanagh, P.; Blanks, R.; Kelly, J.; Kazantzi, G.; Thornton, I.; Simpson, P.R.; Cook, J.M.; Trevor, H.; Hall, G.E.M. Platinum concentrations in urban road dust and soil and in blood and urine in the United Kingdom. Analyst 1998, 123, 451–454. [Google Scholar] [CrossRef]
- Helmers, E.; Schwarzer, M.; Schuster, M. Comparison of Pd and Pt in environmental matrices: Palladium pollution by automobile emissions? Environ. Sci. Pollut. Res. 1998, 5, 44–50. [Google Scholar] [CrossRef]
- Schafer, J.; Hannker, D.; Eckhardt, J.D.; Stuben, D. Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants. Sci. Total Environ. 1998, 215, 59–67. [Google Scholar] [CrossRef]
- Dirk, Κ.; Norbert, J.; Jurgen, M.; Dietmar, S.; Dieter, K. Speciation of platinum metabolites in plants by size-exclusion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1998, 13, 255–262. [Google Scholar] [CrossRef]
- Sebek, O.; Mihaljevič, M.; Strnad, L.; Ettler, V.; Ježek, J.; Stědrý, R.; Drahota, P.; Ackerman, L.; Adamec, V. Dissolution kinetics of Pd and Pt from automobile catalysts by naturally occurring complexing agents. J Hazard Mater. 2011, 198, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Sures, B. Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ. Sci. Pollut. Res. Int. 2004, 11, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Morrison, G. Environmental relevance of the platinum-group elements. Elements 2008, 4, 259–263. [Google Scholar] [CrossRef]
- Nielson, K.; Atkin, C.; Winge, D. Distinct metal-binding configurations in metallothionein. J. Biol. Chem. 1985, 260, 5342–5350. [Google Scholar] [CrossRef]
- Nachtigall, D.; Kock, H.; Artelt, S.; Levsen, K.; Wunsch, G.; Ruhle, T.; Schlogl, R. Platinum solubility of a substance designed as a model for emissions of automobile catalytic converters. Fresenius J. Anal. Chem. 1996, 354, 742–746. [Google Scholar] [CrossRef]
- Nidhi, A.; Samim, M. Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. Sci. Total Environ. 2022, 823, 153787. [Google Scholar]
- Karzhavin, V.K. Sulfides, Selinides and Tellurides of Planinum and Palladium: Estimation of Thermodynamic Properties. Geochem. Int. 2007, 45, 931–937. [Google Scholar] [CrossRef]
- Jacob, K.T.; Gupta, P. Gibbs free energy of formation of rhodium sulfides. J. Chem. Ther. 2014, 70, 39–45. [Google Scholar] [CrossRef]
- Olivotos, S.; Economou-Eliopoulos, M. Gibbs free energy of formation for selected Platinum-Group Minerals (PGM). Geosciences 2016, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Brugger, J.; Etschmann, B.; Grosse, C.; Plumridge, C.; Kaminski, J.; Paterson, D.; Shar, S.S.; Ta, C.; Howard, D.; de Jonge, M.D.; et al. Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chem. Geol. 2013, 343, 99–110. [Google Scholar] [CrossRef]
- Ehrlich, H.L. A brief history of the International Symposia on Environmental Biogeochemistry (ISEB). Soil Sci. Plant Nutr. 2004, 50, 789–791. [Google Scholar] [CrossRef]
- Rosenberg, B.; Van Camp, L.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- WHO/IPCS. Platinum. Environmental Health Criteria; IPCS Publications: Geneva, Switzerland, 1991; p. 125. [Google Scholar]
- Krόmmerer, K.; Helmers, E. Hospital effluents as a source for platinum in the environment. Sci. Total Environ. 1997, 193, 179–184. [Google Scholar] [CrossRef]
- Pyrzyńska, K. Monitoring of platinum in the environment. J. Environ. Monit. 2000, 2, 99N–103N. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Huynh, T.C.; Manivasagan, P.; Mondal, S.; Oh, J. An Up-To-Date Review on Biomedical Applications of Palladium Nanoparticles. Nanomaterials 2019, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Han, L.; Xiao, J.; Wang, L.; Liang, T.; Liao, X. A comparative study of the physiological and biochemical properties of tomato (Lycopersicon esculentum M.) and maize (Zea mays L.) under palladium stress. Sci. Total Environ. 2020, 705, 135938. [Google Scholar] [CrossRef]
- Speranza, A.; Leopold, K.; Maier, M.; Taddei, A.R.; Scoccianti, V. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd (II). Environ. Pollut. 2010, 58, 873–882. [Google Scholar] [CrossRef]
- Roy, G. Les éléments du Groupe Platine (Pd, Pt et Rh) Dans Les Eaux de Surface et Leur Toxicité chez L’algue Verte. Doctoral Dissertation, Université du Québec, Institut National de la Recherche Scientifique, Eau, Terre, Environnement, Québec, QC, Canada, 2009; 145p. [Google Scholar]
- Burnett, T.R.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, S.M.; Krewski, D. Association between particulate-and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 2000, 12, 15–39. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Van Grieken, R. Platinum-group elements in the environment and their health risk. Sci. Total Environ. 2004, 318, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Balaram, V. Environmental impact of platinum, palladium, and rhodium emissions from autocatalytic converters—a brief review of the latest developments. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–37. [Google Scholar] [CrossRef]
- Johnson Matthey, Precious Metal Division, Johnson Matthey Publishing Company, London, UK. 2001. Available online: http:yywww.matthey.comydivisionsyprecious (accessed on 1 January 2020).
- Turner, A.; Price, S. Bioaccessibility of Platinum Group Elements in Automotive Catalytic Converter Particulates. Environ. Sci. Technol. 2008, 42, 9443–9448. [Google Scholar] [CrossRef] [PubMed]
- Puls, C.; Limbeck, A.; Hann, S. Bioaccessibility of palladium and platinum in urban aerosol particulates. Atmos. Environ. 2012, 55, 213–219. [Google Scholar] [CrossRef]
- Kanitsar, K.; Koellensperger, G.; Hann, S.; Limbeck, A.; Puxbaum, H.; Stingeder, G. Determination of Pt, Pd and Rh by inductively coupled plasma sector fieldmass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J. Anal. At. Spectrom. 2003, 18, 239–246. [Google Scholar] [CrossRef]
- Fornalczyk, A.; Saternus, M. Vapour treatment method against other pyro-and hydrometallurgical processes applied to recover platinum form used auto catalytic converters. Acta Metall. Sin. 2013, 26, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Artelt, S.; Creutzenberg, O.; Kock, H.; Levsen, K.; Nachtigall, D.; Heinrich, U.; Rühle, T.; Schlogl, R. Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: A model study. Sci. Total Environ. 1999, 228, 219–242. [Google Scholar] [CrossRef]
- Rzelewska, M.; Regel-Rosocka, M. Wastes generated by automotive industry–Spent automotive catalysts. Phys. Sci. Rev. 2018, 3, 1205–1232. [Google Scholar]
- Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.-C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. [Google Scholar] [CrossRef]
- Ding, Y.; Zheng, H.; Zhang, S.; Liu, B.; Wu, B.; Zhuming, J. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour. Conserv. Recycl. 2019, 155, 104644. [Google Scholar] [CrossRef]
Location | Pt | Pd | Rh | Au | Pd/Pt |
---|---|---|---|---|---|
Highway | |||||
Dust | 1.41 | ||||
KAT1 | 710 | 1000 | 4.0 | 14 | |
KAT2 | 960 | 1300 | 5.0 | 51 | 1.35 |
KAT3 | 440 | 630 | 130 | 60 | 1.41 |
KAT4 | 900 | 670 | 3.0 | 360 | 0.74 |
MES12 | 290 | 500 | 3.0 | 220 | 1.72 |
MES13 | 210 | 300 | 26 | 460 | 1.43 |
MES14 | 210 | 300 | 3.0 | 240 | 1.43 |
MES15 | 400 | 550 | <0.1 | 990 | 1.38 |
I. Odos1 | 500 | 750 | 22 | 90 | 1.50 |
I.Odos2 | 230 | 350 | 24 | 25 | 1.52 |
N.Ath-Th1 | 230 | 340 | 15 | 530 | 1.40 |
N. Ath-Th2 | 190 | 220 | 20 | 27 | 1.16 |
N. Ath-Th3 | 120 | 180 | 16 | 70 | 1.50 |
ACHAR1. | 380 | 650 | 24 | 120 | 1.70 |
ACHAR2. | 240 | 280 | 7.0 | 530 | 1.20 |
ACHAR3. | 140 | 180 | 2.0 | 120 | 1.30 |
ACHAR4. | 200 | 300 | 2.0 | 660 | 1.50 |
ACHAR5. | 320 | 660 | 47 | 1340 | 2.10 |
ACHAR6. | 170 | 260 | <0.1 | 160 | 1.50 |
ACHAR7. | 350 | 490 | 2.0 | 1000 | 1.40 |
ACHAR8. | 320 | 460 | 44 | 210 | 1.40 |
ACHAR9. | 300 | 450 | 49 | 300 | 1.60 |
ACHAR10. | 220 | 320 | 9.0 | 1040 | 1.40 |
ACHAR11. | 160 | 190 | 4.0 | 570 | 1.20 |
ACHAR12. | 110 | 90 | <0.1 | 210 | 0.80 |
ACHAR13. | 160 | 260 | 15 | 900 | 1.60 |
ACHAR14. | 170 | 220 | 13 | 550 | 1.30 |
ACHAR15. | 170 | 210 | 5.0 | 260 | 1.20 |
mean | 314 | 509 | 23 | 411 | 1.40 |
Gully pot | |||||
KAT5 | 1720 | 1570 | 6.0 | 70 | 0.91 |
KAT6 | 2420 | 2400 | 4.0 | 180 | 0.99 |
mean | 2070 | 1985 | 5.0 | 125 | 0.95 |
Soil | |||||
KAT7 | 200 | 196 | <0.1 | 93 | 0.98 |
KAT-MES8 | 440 | 510 | <0.1 | 160 | 1.16 |
KAT-MES9 | 820 | 1100 | 3.0 | 120 | 1.34 |
MES10 | 44 | 90 | 8.0 | 150 | 2.04 |
MES11 | 36 | 74 | 10 | 6 | 2.06 |
N.Ath-Th | 92 | 100 | 35 | 27 | 1.11 |
Lowway | |||||
Soil | |||||
Pi-MES | 230 | 360 | 2.0 | 143 | 1.58 |
Pi | 60 | 70 | 1.5 | 56 | 1.17 |
NAV | 150 | 230 | 34 | 26 | 1.50 |
mean | 230 | 303 | 13 | 87 | 1.50 |
Background (*) | 1.15 | <2.1 |
μg/kg | |||||
---|---|---|---|---|---|
Pt | Pd | Rh | Au | Pd/Pt | |
Highway | |||||
Grassy | |||||
KAT1 | 2.0 | 3.8 | <0.1 | 21 | 1.9 |
KAT2 | 7.0 | 20 | <0.1 | 25 | 2.9 |
KAT3 | 10 | 23 | 5.0 | 22 | 2.3 |
KAT4 | 3.2 | 5.3 | 0.1 | 13 | 2.3 |
KAT5 | 1.2 | 2.1 | <0.1 | 5 | 1.8 |
KAT6 | 1.5 | 1.7 | <0.1 | 38 | 1.1 |
KAT7 | 1.8 | 4.8 | 0.2 | 10 | 2.7 |
Tree-leaves | |||||
KAT-8 | 3.5 | 4.0 | 0.7 | 110 | 1.1 |
KAT9 | 5.2 | 4.4 | 0.7 | 30 | 0.9 |
KAT10 | 4.0 | 6.1 | <0.1 | 7.0 | 1.5 |
KAT-MES1 | 16 | 20 | 1.4 | 22 | 1.2 |
KAT-MES2 | 10 | 8.0 | <0.1 | 120 | 0.8 |
Grassy | |||||
MES3 | 6.0 | 21 | <0.1 | 16 | 3.5 |
MES4 | 2.0 | 4.4 | <0.1 | 250 | 2.2 |
MES5 | 1.0 | 1.8 | <0.1 | 16 | 1.8 |
Tree-leaves | |||||
MES6 | 2.8 | 2.5 | <0.1 | 44 | 0.9 |
MES7 | 4.0 | 6.0 | <0.1 | 55 | 1.5 |
MES8 | 1.2 | 3.8 | <0.1 | 67 | 3.2 |
MES9 | 2.2 | 2.3 | <0.1 | 36 | 1.1 |
MES10 | 2.0 | 4.4 | <0.1 | 250 | 2.2 |
MES11 | 1.0 | 1.8 | <0.1 | 16 | 1.8 |
N.Ath-Th | 2.4 | 0.6 | <0.1 | 21 | 0.3 |
Lowway | |||||
Grassy | |||||
Pi-MES. | 1.2 | 4.0 | <0.1 | 7.0 | 3.3 |
Pi.1 | 1.1 | 6.5 | <0.1 | 2.0 | 5.9 |
Pi.2 | 4.6 | 1.0 | <0.1 | 35 | 0.2 |
NAV.1 | 1.3 | 2.0 | <0.1 | 16 | 1.5 |
NAV.2 | 0.8 | 4.7 | <0.1 | 170 | 1.5 |
NAV.3 | 1.0 | 0.6 | <0.1 | 8.0 | 0.6 |
NAV.4 | 3.6 | 4.2 | <0.1 | 48 | 1.2 |
NAV.5 | 0.8 | 1.6 | <0.1 | 28 | 2.0 |
background-G | <1.1 | <1.7 | |||
STANDARD FA-100S | 41 | 41 | 38 |
(mp/ms) × 100 | ||||
---|---|---|---|---|
Greece | Pt | Pd | Rh | Au |
Highway | ||||
Grassy | ||||
KAT3 | 5.00 | 12.00 | 3.84 | 24 |
KAT4 | 1.61 | 2.70 | 1.67 | 27 |
MES10 | 4.54 | 4.89 | n.d. | 167 |
MES11 | 2.77 | 2.43 | n.d. | 267 |
Tree-leaves | ||||
KAT-MES8 | 3.64 | 3.92 | n.d. | 14 |
KAT-MES9 | 1.22 | 0.72 | n.d. | 100 |
N.Ath-Th | 2.61 | 0.61 | n.d. | 78 |
Lowway | ||||
Grassy | ||||
Pi-K | 2.61 | 5.83 | n.d. | 4.9 |
Pi-s | 4.51 | 4.71 | n.d. | 30 |
Pi-N | 1.00 | 0.96 | n.d. | 207 |
Mean | 2.95 | 3.88 | 2.76 | 92 |
Australia [11] | ||||
Shoots | 1.91 | 5.56 | 2.97 | |
Roots | 9.58 | 21.00 | 31.25 | |
Mean (n = 4) | 4.40 | 12.43 | 6.96 |
mg/kg | KAT1 | MES1 | MES2 | Iera Odos | N. Ath-Th | STD, DS7 |
---|---|---|---|---|---|---|
Cr | 120 | 103 | 71 | 135 | 113 | 252 |
Ni | 66 | 63 | 57 | 68 | 160 | 55 |
Co | 7.0 | 7.0 | 8.0 | 6.0 | 13 | 10 |
Mn | 290 | 400 | 350 | 480 | 400 | 620 |
Cu | 370 | 520 | 200 | 650 | 160 | 103 |
Pb | 830 | 130 | 860 | 310 | 230 | 68 |
Zn | 320 | 320 | 370 | 530 | 490 | 410 |
As | 12 | 13 | 15 | 9.0 | 11 | 52 |
La | 7.0 | 5.0 | 6.0 | 12 | 7.0 | 13 |
Ce | 18 | 11 | 13 | 14 | 15 | 39 |
Ba | 120 | 114 | 123 | 125 | 120 | 390 |
Sr | 79 | 100 | 75 | 114 | 330 | 75 |
Cd | 0.5 | 0.4 | 0.9 | 1.0 | 0.8 | 6.0 |
Sb | 17 | 16 | 12 | 14 | 5.0 | 5.0 |
Zr | 0.8 | 0.5 | 0.9 | 0.2 | 0.9 | 6.0 |
Y | 3.5 | 3.1 | 4.4 | 2.4 | 4.6 | 5.5 |
wt.% | ||||||
Al | 0.4 | 0.4 | 0.6 | 0.3 | 0.7 | 1.03 |
Fe | 2.0 | 1.7 | 1.8 | 2.6 | 2.4 | 2.41 |
Ti | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.12 |
Mg | 0.7 | 0.8 | 0.7 | 1.2 | 1.0 | 1.02 |
Ca | 18.1 | 21.5 | 17.2 | 24.9 | 20.3 | 0.93 |
Na | 0.01 | 0.03 | 0.02 | 0.06 | 0.02 | 0.12 |
K | 0.08 | 0.07 | 0.15 | 0.1 | 0.2 | 0.48 |
P | 0.06 | 0.04 | 0.06 | 0.05 | 0.11 | 0.08 |
S | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliopoulos, I.-P.; Eliopoulos, G.; Sfendoni, T.; Economou-Eliopoulos, M. Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes. Minerals 2022, 12, 917. https://doi.org/10.3390/min12070917
Eliopoulos I-P, Eliopoulos G, Sfendoni T, Economou-Eliopoulos M. Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes. Minerals. 2022; 12(7):917. https://doi.org/10.3390/min12070917
Chicago/Turabian StyleEliopoulos, Ioannis-Porfyrios, George Eliopoulos, Theodora Sfendoni, and Maria Economou-Eliopoulos. 2022. "Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes" Minerals 12, no. 7: 917. https://doi.org/10.3390/min12070917
APA StyleEliopoulos, I. -P., Eliopoulos, G., Sfendoni, T., & Economou-Eliopoulos, M. (2022). Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes. Minerals, 12(7), 917. https://doi.org/10.3390/min12070917