Mineral Neutralizers as a Tool for Improving the Properties of Soil Contaminated with Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analytical Methods
2.3. Experimental Data Analysis
3. Results
3.1. Reaction, Acidity, and Sorption Complex
3.2. Total Organic Carbon, Total Nitrogen Content, and C/N Ratio
3.3. Cu, Zn, Cr, Ni, Pb, Mn, and Fe Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hercer, M.; Wyszkowski, M.; Modrzewska, B. Impact of Traffic on the Content of Trace Elements in Soils along State Road 53 (Poland). Fresenius Environ. Bull. 2016, 25, 719–731. [Google Scholar]
- Plyatsuk, L.D.; Chernysh, Y.Y.; Ablieieva, I.Y.; Yakhnenko, O.M.; Bataltsev, E.V.; Balintova, M.; Hurets, L.L. Remediation of Soil Contaminated with Heavy Metals. J. Eng. Sci. 2019, 6, h1–h8. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M. Soil Contamination with Copper and Its Effect on Selected Soil Properties after Applying Neutralizing Substances. Polish J. Environ. Stud. 2019, 28, 2465–2471. [Google Scholar] [CrossRef]
- Bowszys, T.; Wierzbowska, J.; Bowszys, J. Content and Removal of Cu and Zn with Harvested Crops Grown on Soil Fertilized with Composted Municipal Sewage Sludge. J. Elem. 2009, 14, 23–32. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Wyszkowski, M.; Rolka, E.; Sawicka, M. Mineral Materials as a Neutralizing Agent Used on Soil Contaminated with Copper. Materials 2021, 14, 6830. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Shapoval, P.; Zgorelec, Ž.; Stefanovska, T.; Zhukov, O. Multiyear Phytoremediation and Dynamic of Foliar Metal(Loid)s Concentration during Application of Miscanthus × Giganteus Greef et Deu to Polluted Soil from Bakar, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 31446–31457. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M. Assessment of Heavy Metal Content in Soils Adjacent to the Dk16-Route in Olsztyn (North-Eastern Poland). Polish J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [Green Version]
- Rolka, E.; Żołnowski, A.C.; Kozłowska, K.A. Assessment of the Content of Trace Elements in Soils and Roadside Vegetation in the Vicinity of Some Gasoline Stations in Olsztyn (Poland). J. Elem. 2020, 25, 549–563. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J.; Baćmaga, M.; Boros-Lajszner, E. Sensitivity of Soil Enzymes to Excessive Zinc Concentrations. J. Elemntology 2012, 3, 637–648. [Google Scholar] [CrossRef]
- Szymańska-Pulikowska, A. Changes in the Content of Selected Heavy Metals in Groundwater Exposed to the Impact of a Municipal Landfill Site. J. Elem. 2012, 17, 689–702. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Applicability of Biochemical Indices to Quality Assessment of Soil Polluted with Heavy Metals. J. Elem. 2013, 18, 733–756. [Google Scholar] [CrossRef]
- Lenart, A.; Wolny-Koładka, K. The Effect of Heavy Metal Concentration and Soil pH on the Abundance of Selected Microbial Groups within Arcelormittal Poland Steelworks in Cracow. Bull. Environ. Contam. Toxicol. 2013, 90, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water. Air. Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Kostecki, J.; Greinert, A.; Drab, M.; Wasylewicz, R.; Walczak, B. Chemical Soil Degradation n the Area of the Głogów Copper Smelter Protective Forest/Degradacja Ziemi Na Terenach Byłej Strefy Ochronnej Huty Miedzi Głogów. Civ. Environ. Eng. Rep. 2015, 17, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Narendrula, R.; Nkongolo, K.K.; Beckett, P. Comparative Soil Metal Analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo). Bull. Environ. Contam. Toxicol. 2012, 88, 187–192. [Google Scholar] [CrossRef]
- Komárek, M.; Vaněk, A.; Chrastný, V.; Száková, J.; Kubová, K.; Drahota, P.; Balík, J. Retention of Copper Originating from Different Fungicides in Contrasting Soil Types. J. Hazard. Mater. 2009, 166, 1395–1402. [Google Scholar] [CrossRef]
- Huma Khan, N. Study of Copper Level in Soil of Selected Orchard and Non-Orchard Fields. Agric. Res. Technol. Open Access J. 2017, 9, 81–88. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The Effect of Excess Copper on Growth and Physiology of Important Food Crops: A Review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of Vineyard Soils with Fungicides: A Review of Environmental and Toxicological Aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Avramidis, P.; Barouchas, P.; Dünwald, T.; Unkel, I.; Panagiotaras, D. The Influence of Olive Orchards Copper-Based Fungicide Use, in Soils and Sediments—The Case of Aetoliko (Etoliko) Lagoon Western Greece. Geoscience 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, M.; Shu, H. Distribution and Fractionation of Copper in Soils of Apple Orchards. Environ. Sci. Pollut. Res. Int. 2005, 12, 168–172. [Google Scholar] [CrossRef]
- Kennen, K.; Kirkwood, N. Phyto. Principles and Resources for Site Remediation and Landscape Design; Routledge Taylor and Francis: London, UK, 2015. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Busse, M.K.; Zając, P.K. Response of Maize (Zea mays L.) to Soil Contamination with Copper Depending on Applied Contamination Neutralizing Substances. J. Elem. 2013, 18, 507–520. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Rolka, E.; Wyszkowski, M. Availability of Trace Elements in Soil with Simulated Cadmium, Lead and Zinc Pollution. Minerals 2021, 11, 879. [Google Scholar] [CrossRef]
- Nwachukwu, O.I.; Pulford, I.D. Comparative Effectiveness of Selected Adsorbant Materials as Potential Amendments for the Remediation of Lead-, Copper- and Zinc-Contaminated Soil. Soil Use Manag. 2008, 24, 199–207. [Google Scholar] [CrossRef]
- Radziemska, M.; Koda, E.; Bilgin, A.; Vaverková, M.D. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. Int. J. Environ. Res. Public Health 2018, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Zolnowski, A.; Ciecko, Z.; Najmowicz, T. Arsenic Content in and Uptake by Plants from Arsenic-Contaminated Soil. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination; Kulakow, P.A., Pidlisnyuk, V.V., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 135–145. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Brodowska, M.S. Phytoextraction with Maize of Soil Contaminated with Copper after Application of Mineral and Organic Amendments. Agronomy 2020, 10, 1597. [Google Scholar] [CrossRef]
- Sądej, W.; Żołnowski, A.C.; Ciećko, Z.; Grzybowski, Ł.; Szostek, R. Evaluation of the Impact of Soil Contamination with Mercury and Application of Soil Amendments on the Yield and Chemical Composition of Avena sativa L. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2020, 55, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.-J.; Lee, M.-E.; Chung, J.W. Comparison of Heavy Metal Immobilization in Contaminated Soils Amended with Peat Moss and Peat Moss-Derived Biochar. Environ. Sci. Process. Impacts 2016, 18, 514–520. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, M.Z.; Cydzik-Kwiatkowska, A.; Blazejczyk, A.; Kumar, V.; Kintl, A.; Brtnicky, M. Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze—Thaw Cycles. Materials 2022, 15, 3801. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, K.S.; Kang, D.; Yoon, H.; Sung, K. Effects of Humic Acid on Heavy Metal Uptake by Herbaceous Plants in Soils Simultaneously Contaminated by Petroleum Hydrocarbons. Environ. Earth Sci. 2013, 68, 2375–2384. [Google Scholar] [CrossRef]
- Wu, S.; Li, R.; Peng, S.; Liu, Q.; Zhu, X. Effect of Humic Acid on Transformation of Soil Heavy Metals. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 207. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Lu, N.; Wei, Y.; Zhu, D. Relationship between Heavy Metal Content in Polluted Soil and Soil Organic Matter and PH in Mining Areas. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 394. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors Influencing Metal Bioavailability in Soils: Preliminary Investigations for the Development of a Critical Loads Approach for Metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of Using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Natural Resources Conservation Service Soils, U.S.D. of A. Soil Texture Calculator. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/research/guide/?cid=NRCS142P2_054167 (accessed on 18 August 2021).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plants Properties, 1st ed.; IOŚ Warszawa: Warszawa, Poland, 1991. [Google Scholar]
- Tibco. Statistica Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021. [Google Scholar]
- Microsoft. MS Excel® for Microsoft 365 MSO; Microsoft Corporation: Albuquerque, NM, USA, 2021. [Google Scholar]
- Minister of the Environment. Regulation of the Minister of the Environment of September 1, 2016 on the Method of Assessing Pollution of the Earth’s Surface; Journal of Laws of the Republic of Poland; Minister of the Environment: Warsaw, Poland, 2016. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 15 May 2022).
- European Commission. Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). Off. J. Eur. Communities 1986, 4, 6–12. [Google Scholar]
- Zhang, Y.; Zhang, H.; Zhang, Z.; Liu, C.; Sun, C.; Zhang, W.; Marhaba, T. PH Effect on Heavy Metal Release from a Polluted Sediment. J. Chem. 2018, 2018, 7597640. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Vlcek, V.; Pohanka, M. Adsorption of Copper in Soil and Its Dependence on Physical and Chemical Properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.J.; Jones, D.L. Chemical and Organic Immobilization Treatments for Reducing Phytoavailability of Heavy Metals in Copper-Mine Tailings. J. Plant Nutr. Soil Sci. 2008, 171, 908–916. [Google Scholar] [CrossRef]
- Janoš, P.; Vávrová, J.; Herzogová, L.; Pilařová, V. Effects of Inorganic and Organic Amendments on the Mobility (Leachability) of Heavy Metals in Contaminated Soil: A Sequential Extraction Study. Geoderma 2010, 159, 335–341. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Inglezakis, V.J.; Loizidou, M. Heavy Metals Fractionation before, during and after Composting of Sewage Sludge with Natural Zeolite. Waste Manag. 2008, 28, 2054–2060. [Google Scholar] [CrossRef]
- Ponizovsky, A.A.; Thakali, S.; Allen, H.E.; Di Toro, D.M.; Ackerman, A.J. Effect of Soil Properties on Copper Release in Soil Solutions at Low Moisture Content. Environ. Toxicol. Chem. 2006, 25, 671–682. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in Soil Using Amendments—A Review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Gao, X.; Rodrigues, S.M.; Spielman-Sun, E.; Lopes, S.; Rodrigues, S.; Zhang, Y.; Avellan, A.; Duarte, R.M.B.O.; Duarte, A.; Casman, E.A.; et al. Effect of Soil Organic Matter, Soil PH, and Moisture Content on Solubility and Dissolution Rate of CuO NPs in Soil. Environ. Sci. Technol. 2019, 53, 4959–4967. [Google Scholar] [CrossRef]
Soil Pollution with Cu (mg Cu kg−1) | Without MNs | Limestone | Clay | Zeolite | Mean |
---|---|---|---|---|---|
Starting soil pH H2O = 7.07 pH H2O (−log10H+) | |||||
0 | 6.80 ± 0.07 e | 7.70 ± 0.06 j | 7.06 ± 0.01 g | 6.95 ± 0.04 f | 7.13 D |
200 | 6.39 ± 0.06 d | 7.43 ± 0.01 i | 6.36 ± 0.08 d | 6.34 ± 0.06 d | 6.63 C |
400 | 5.79 ± 0.08 bc | 7.29 ± 0.01 h | 5.74 ± 0.01 bc | 5.84 ± 0.02 c | 6.16 B |
600 | 5.54 ± 0.04 a | 6.85 ± 0.08 ef | 5.71 ± 0.01 b | 5.73 ± 0.05 bc | 5.96 A |
Mean | 6.13 A | 7.32 C | 6.22 B | 6.21 B | 6.47 |
r | −0.985 ** | −0.971 ** | −0.945 ** | −0.962 ** | −0.654 ** |
LSD for: | Cu pollution: 0.053; MNs: 0.053; interaction: 0.108 | ||||
Starting soil pH 1M KCl = 6.44 pH 1M KCl (−log10H+) | |||||
0 | 6.14 ± 0.01 g | 7.36 ± 0.09 l | 6.58 ± 0.04 j | 6.44 ± 0.07 i | 6.63 D |
200 | 5.64 ± 0.03 e | 7.27 ± 0.01 l | 5.73 ± 0.04 ef | 5.80 ± 0.07 f | 6.11 C |
400 | 5.32 ± 0.07 cd | 6.77 ± 0.01 k | 5.30 ± 0.06 cd | 5.40 ± 0.06 d | 5.70 B |
600 | 5.09 ± 0.01 a | 6.31 ± 0.06 h | 5.18 ± 0.03 ab | 5.26 ± 0.03 bc | 5.46 A |
Mean | 5.55 A | 6.93 C | 5.70 B | 5.73 B | 5.97 |
r | −0.983 ** | −0.963 ** | −0.942 ** | −0.958 ** | −0.608 ** |
LSD for: | Cu pollution: 0.052; MNs: 0.052; interaction: 0.105 |
Soil Pollution with Cu (mg Cu kg−1) | Without MNs | Limestone | Clay | Zeolite | Mean |
---|---|---|---|---|---|
Starting soil 2.46 cmol(+) kg−1 Hydrolytic acidity (HAC) (cmol(+) kg−1) | |||||
0 | 2.68 ± 0.04 def | 1.32 ± 0.00 a | 2.18 ± 0.08 c | 2.20 ± 0.11 c | 2.09 A |
200 | 2.78 ± 0.14 ef | 1.78 ± 0.03 b | 2.64 ± 0.11 de | 2.88 ± 0.11 f | 2.52 B |
400 | 3.16 ± 0.23 g | 2.16 ± 0.06 c | 3.24 ± 0.11 gh | 3.12 ± 0.06 g | 2.92 C |
600 | 3.44 ± 0.06 hi | 2.48 ± 0.06 d | 3.52 ± 0.11 i | 3.34 ± 0.08 ghi | 3.20 D |
Mean | 3.01 C | 1.94 A | 2.90 B | 2.89 B | 2.68 |
r | 0.934 ** | 0.994 ** | 0.981 ** | 0.945 ** | 0.674 ** |
LSD for: | Cu pollution: 0.108; MNs: 0.108; interaction: 0.215 | ||||
Starting soil 6.57 cmol(+) kg−1 Total exchangeable bases (TEB) (cmol(+) kg−1) | |||||
0 | 6.17 ± 0.13 e | 9.22 ± 0.45 h | 7.85 ± 0.47 fg | 5.96 ± 0.11 de | 7.30 C |
200 | 5.24 ± 0.25 cd | 8.51 ± 0.38 g | 3.55 ± 0.24 b | 5.72 ± 0.28 de | 5.76 B |
400 | 7.51 ± 0.16 f | 7.79 ± 0.18 fg | 1.60 ± 0.48 a | 4.98 ± 0.20 c | 5.47 B |
600 | 4.07 ± 0.38 b | 6.43 ± 0.41 e | 3.58 ± 0.48 b | 6.28 ± 0.14 e | 5.09 A |
Mean | 5.75 B | 7.99 C | 4.15 A | 5.74 B | 5.93 |
r | −0.354 ns | −0.955 ** | −0.716 * | 0.049 ns | −0.389 * |
LSD for: | Cu pollution: 0.345; MNs: 0.345; interaction: 0.690 | ||||
Starting soil 9.03 cmol(+) kg−1 Cation exchange capacity (CEC) (cmol(+) kg−1) | |||||
0 | 8.85 ± 0.09 fg | 10.54 ± 0.45 i | 10.03 ± 0.55 hi | 8.16 ± 0.00 defg | 9.39 B |
200 | 8.02 ± 0.11 de | 10.29 ± 0.35 hi | 6.19 ± 0.35 b | 8.60 ± 0.40 efg | 8.28 A |
400 | 10.67 ± 0.07 i | 9.95 ± 0.24 hi | 4.84 ± 0.59 a | 8.10 ± 0.14 def | 8.39 A |
600 | 7.51 ± 0.33 cd | 8.91 ± 0.35 g | 7.10 ± 0.37 c | 9.62 ± 0.06 h | 8.29 A |
Mean | 8.76 B | 9.92 C | 7.04 A | 8.62 B | 8.59 |
r | −0.125 ns | −0.872 ** | −0.586 ns | 0.692 ns | −0.224 ns |
LSD for: | Cu pollution: 0.349; MNs: 0.349; interaction: 0.700 | ||||
Starting soil 72.75% Base saturation (BS) (%) | |||||
0 | 69.75 ± 0.71 h | 87.46 ± 0.54 j | 78.26 ± 0.35 i | 73.04 ± 1.39 h | 77.13 C |
200 | 65.32 ± 2.25 e | 82.69 ± 0.87 i | 57.33 ± 0.61 cd | 66.51 ± 0.23 ef | 67.96 B |
400 | 70.39 ± 1.92 fg | 78.29 ± 0.04 i | 32.69 ± 5.92 a | 61.47 ± 1.37 de | 60.71 A |
600 | 54.14 ± 2.74 bc | 72.13 ± 1.74 g | 50.31 ± 4.17 b | 65.28 ± 1.09 e | 60.46A |
Mean | 69.40 B | 80.14 C | 54.65 A | 66.57 B | 66.57 |
r | −0.700 | −0.989 ** | −0.734 * | −0.746 * | −0.485 ** |
LSD for: | Cu pollution: 2.362; MNs: 2.362; interaction: 4.725 | ||||
Starting soil 0.89 μS cm−1 Electrolytic conductivity (EC) (μS cm−1) | |||||
0 | 0.94 ± 0.05 a | 1.09 ± 0.01 a | 1.09 ± 0.02 a | 0.93 ± 0.03 a | 1.01 A |
200 | 1.00 ± 0.01 a | 2.21 ± 0.00 b | 2.29 ± 0.04 b | 2.10 ± 0.13 b | 1.90 B |
400 | 4.73 ± 0.08 e | 3.85 ± 0.11 c | 4.44 ± 0.01 d | 4.21 ± 0.21 d | 4.31 C |
600 | 4.79 ± 0.00 e | 5.72 ± 0.10 f | 4.83 ± 0.04 e | 4.70 ± 0.34 e | 5.01 D |
Mean | 2.86 A | 3.22 C | 3.16 C | 2.99 B | 3.06 |
r | 0.902 ** | 0.994 ** | 0.971 ** | 0.972 ** | 0.951 ** |
LSD for: | Cu pollution: 0.122; MNs: 0.121; interaction: 0.243 |
Soil Pollution with Cu (mg Cu kg−1) | Without MNs | Limestone | Clay | Zeolite | Mean |
---|---|---|---|---|---|
Starting soil 4.79 g kg−1 Total organic carbon content (TOC) (g kg−1) | |||||
0 | 5.05 ± 0.21 bc | 4.50 ± 0.21 ab | 4.68 ± 0.11 abc | 5.70 ± 0.21 d | 4.98 A |
200 | 4.50 ± 0.21 ab | 4.85 ± 0.07 abc | 5.08 ± 0.25 bc | 5.25 ± 0.42 cd | 4.92 A |
400 | 4.35 ± 0.42 a | 4.88 ± 0.18 abc | 4.60 ± 0.35 ab | 4.95 ± 0.00 abc | 4.69 A |
600 | 5.23 ± 0.04 cd | 4.95 ± 0.42 abc | 5.10 ± 0.21 bc | 4.50 ± 0.21 ab | 4.94 A |
Mean | 4.78 A | 4.79 A | 4.86 A | 5.10 A | 4.88 |
r | 0.102 ns | 0.614 ns | 0.313 ns | −0.919 ** | −0.097 ns |
LSD for: | Cu pollution: ns; MNs: ns; interaction: 0.542 | ||||
Starting soil 0.58 g kg−1 Total nitrogen content (Ntot) (g kg−1) | |||||
0 | 0.50 ± 0.04 bcde | 0.55 ± 0.01 abc | 0.56 ± 0.02 abcd | 0.54 ± 0.05 ab | 0.54 AB |
200 | 0.53 ± 0.02 a | 0.53 ± 0.01 a | 0.57 ± 0.01 abcd | 0.53 ± 0.00 a | 0.54 A |
400 | 0.60 ± 0.01 cdef | 0.53 ± 0.03 a | 0.62 ± 0.01 ef | 0.54 ± 0.01 ab | 0.57 BC |
600 | 0.55 ± 0.02 ab | 0.61 ± 0.01 def | 0.63 ± 0.02 f | 0.56 ± 0.02 abcd | 0.59 C |
Mean | 0.54 A | 0.55 A | 0.60 B | 0.54 A | 0.56 |
r | 0.613 ns | 0.496 ns | 0.886 ** | 0.358 ns | 0.499 ** |
LSD for: | Cu pollution: 0.021; MNs: 0.021; interaction: 0.042 | ||||
Starting soil 8.26 C:N ratio | |||||
0 | 8.69 ± 0.22 abcd | 8.14 ± 0.24 abc | 8.35 ± 0.11 abc | 10.64 ± 1.37 e | 8.95 A |
200 | 8.46 ± 0.08 abcd | 9.16 ± 0.38 bcd | 8.96 ± 0.59 bcd | 9.87 ± 0.80 de | 9.11 A |
400 | 7.31 ± 0.59 a | 9.31 ± 0.86 bcde | 7.39 ± 0.68 a | 9.19 ± 0.17 bcd | 8.30 A |
600 | 9.57 ± 0.28 cde | 8.19 ± 0.80 abc | 8.09 ± 0.08 ab | 8.05 ± 0.66 ab | 8.48 A |
Mean | 8.51 A | 8.70 A | 8.20 A | 9.43 B | 8.71 |
r | 0.199 ns | 0.049 ns | −0.403 ns | −0.836 ** | −0.260 ns |
LSD for: | Cu pollution: ns; MNs: 0.643; interaction: 1.286 |
Soil Pollution with Cu (mg Cu kg−1) | Without MNs | Limestone | Clay | Zeolite | Mean |
---|---|---|---|---|---|
Starting soil 18.21 mg Cu kg−1 Cu content (mg kg−1) | |||||
0 | 12.21 ± 0.30 a | 29.86 ± 3.05 a | 12.89 ± 2.79 a | 35.69 ± 6.95 a | 22.66 A |
200 | 160.77 ± 0.45 b | 170.24 ± 9.39 b | 151.76 ± 15.61 b | 179.92 ± 0.94 b | 165.67 B |
400 | 345.56 ± 0.72 c | 348.34 ± 27.51 c | 328.50 ± 16.72 c | 343.64 ± 22.73 c | 341.51 C |
600 | 553.25 ± 1.43 e | 482.92 ± 12.54 d | 506.44 ± 22.73 d | 538.03 ± 17.65 e | 520.16 D |
Mean | 267.95 BC | 257.84 AB | 249.90 A | 274.32 C | 262.50 |
r | 0.997 ** | 0.996 ** | 0.996 ** | 0.996 ** | 0.994 ** |
LSD for: | Cu pollution: 14.375; MNs: 14.375; interaction: 28.750 | ||||
Zn content (mg kg−1) | |||||
0 | 19.65 ± 0.17 a | 33.61 ± 0.29 gh | 31.33 ± 2.49 defg | 33.15 ± 2.56 fgh | 29.44 B |
200 | 29.44 ± 2.54 bcdefgh | 28.48 ± 3.45 bcde | 30.30 ± 2.20 cdefgh | 33.34 ± 0.71 gh | 30.39 B |
400 | 26.62 ± 0.33 bc | 27.04 ± 1.34 bcd | 29.21 ± 2.91 bcdefg | 25.55 ± 0.33 b | 27.10 A |
600 | 33.73 ± 1.54 h | 32.69 ± 1.04 efgh | 30.24 ± 1.21 cdefgh | 28.77 ± 1.49 bcdef | 31.36 B |
Mean | 27.36 A | 30.45 B | 30.27 B | 30.20 B | 29.57 |
r | 0.843 ** | −0.153 ns | −0.274 ns | −0.683 ns | 0.072 ns |
LSD for: | Cu pollution: 1.952; MNs: 1.952; interaction: 3.904 | ||||
Cd content (mg kg−1) | |||||
0 | 0.94 ± 0.23 ab | 0.81 ± 0.02 a | 0.97 ± 0.14 ab | 1.24 ± 0.15 bcde | 0.99 A |
200 | 0.81 ± 0.12 a | 1.15 ± 0.32 abcd | 1.26 ± 0.14 bcde | 1.45 ± 0.04 de | 1.17 BC |
400 | 1.17 ± 0.09 bcde | 1.50 ± 0.04 e | 1.34 ± 0.13 cde | 1.01 ± 0.11 abc | 1.25 C |
600 | 1.21 ± 0.12 bcde | 1.08 ± 0.06 abc | 0.92 ± 0.12 ab | 0.98 ± 0.15 ab | 1.05 AB |
Mean | 1.03 A | 1.13 A | 1.12 A | 1.17 A | 1.12 |
r | 0.677 ns | 0.472 ns | −0.036 ns | −0.652 ns | 0.126 ns |
LSD for: | Cu pollution: ns; MNs: ns; interaction: 1.282 | ||||
Cr content (mg kg−1) | |||||
0 | 14.65 ± 1.10 a | 17.54 ± 0.48 a | 19.22 ± 0.72 a | 10.17 ± 2.46 a | 15.39 A |
200 | 11.84 ± 2.79 a | 14.79 ± 1.46 a | 17.35 ± 3.10 a | 14.24 ± 1.30 a | 14.55 A |
400 | 8.77 ± 0.23 a | 17.45 ± 1.38 a | 14.31 ± 8.87 a | 8.18 ± 1.11 a | 12.18 A |
600 | 13.28 ± 0.36 a | 18.66 ± 1.55 a | 16.37 ± 2.90 a | 8.57 ± 0.37 a | 14.22 A |
Mean | 12.14 A | 17.11 B | 16.81 B | 10.29 A | 14.09 |
r | −0.329 ns | 0.397 ns | −0.331 ns | −0.462 ns | −0.163 ns |
LSD for: | Cu pollution: ns; MNs: 2.931; interaction: n.s. | ||||
Ni content (mg kg−1) | |||||
0 | 14.21 ± 2.83 a | 10.79 ± 1.50 a | 8.33 ± 0.27 a | 11.70 ± 2.74 a | 11.26 A |
200 | 18.39 ± 7.47 a | 10.13 ± 1.17 a | 7.77 ± 0.14 a | 10.02 ± 0.32 a | 11.58 A |
400 | 11.40 ± 0.59 a | 12.91 ± 3.55 a | 8.65 ± 2.09 a | 9.44 ± 1.28 a | 10.60 A |
600 | 12.14 ± 4.90 a | 13.04 ± 3.92 a | 10.17 ± 0.24 a | 9.45 ± 0.15 a | 11.20 A |
Mean | 14.03 B | 11.72 AB | 8.73 A | 10.15 A | 11.16 |
r | −0.344 ns | 0.451 ns | 0.614 ns | −0.578 ns | −0.039 ns |
LSD for: | Cu pollution: ns; MNs: 3.064; interaction: ns |
Soil Pollution with Cu (mg Cu kg−1) | Without MNs | Limestone | Clay | Zeolite | Mean |
---|---|---|---|---|---|
Pb content (mg kg−1) | |||||
0 | 16.05 ± 2.35 a | 16.67 ± 1.18 a | 14.86 ± 2.95 a | 17.06 ± 2.5 a | 16.16 A |
200 | 13.92 ± 2.84 a | 17.82 ± 1.41 a | 13.78 ± 3.20 a | 15.14 ± 1.87 a | 15.16 A |
400 | 17.63 ± 0.05 a | 14.53 ± 0.29 a | 17.57 ± 0.05 a | 15.93 ± 1.87 a | 16.41 A |
600 | 13.91 ± 6.48 a | 16.37 ± 1.82 a | 14.48 ± 0.49 a | 13.65 ± 3.98 a | 14.60 A |
Mean | 15.37 A | 16.34 A | 15.17 A | 15.44 A | 15.58 |
r | −0.099 ns | −0.313 ns | 0.140 ns | −0.465 ns | −0.163 ns |
LSD for: | Cu pollution: ns; MNs: ns; interaction: ns | ||||
Mn content (mg kg−1) | |||||
0 | 220.34 ± 12.02 a | 232.97 ± 20.20 a | 239.52 ± 10.83 a | 229.97 ± 23.25 a | 230.70 A |
200 | 213.70 ± 7.16 a | 214.25 ± 12.58 a | 220.77 ± 2.07 a | 243.31 ± 47.13 a | 223.01 A |
400 | 221.31 ± 9.48 a | 228.87 ± 10.22 a | 214.53 ± 6.80 a | 226.30 ± 30.92 a | 222.75 A |
600 | 226.88 ± 23.22 a | 222.14 ± 6.22 a | 221.72 ± 13.84 a | 215.61 ± 0.05 a | 221.59 A |
Mean | 220.56 A | 224.56 A | 224.13 A | 228.80 A | 224.51 |
r | 0.273 ns | −0.169 ns | −0.582 ns | −0.283 ns | −0.196 ns |
LSD for: | Cu pollution: ns; MNs: ns; interaction: ns | ||||
Fe content (mg kg−1) | |||||
0 | 6829 ± 649 a | 7041 ± 430 a | 7664 ± 105 a | 6699 ± 1168 a | 7058 AB |
200 | 6625 ± 886 a | 7148 ± 690 a | 7987 ± 37 a | 7427 ± 403 a | 7297 B |
400 | 5866 ± 168 a | 7308 ± 78 a | 6432 ± 609 a | 6233 ± 322 a | 6460 A |
600 | 6400 ± 440 a | 7792 ± 285 a | 7513 ± 452 a | 5696 ± 537 a | 6851 AB |
Mean | 6430 A | 7322 B | 7399 B | 6514 A | 6916 |
r | −0.413 ns | 0.643 ns | −0.349 ns | −0.586 ns | −0.214 ns |
LSD for: | Cu pollution: 573.66; MNs: 573.66; interaction: ns |
Properties | pH H2O | pH KCl | HAC | TEB | CEC | BS | EC | TOC | Ntot | C-N | Cu | Zn | Cd | Cr | Ni | Pb | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH H2O | 0.98 | −0.96 | 0.73 | 0.54 | 0.80 | −0.61 | 0.03 | −0.37 | 0.22 | −0.66 | 0.07 | −0.05 | 0.47 | 0.12 | 0.16 | 0.15 | 0.43 | |
pH KCl | 0.98 | −0.97 | 0.76 | 0.57 | 0.81 | −0.54 | 0.00 | −0.37 | 0.20 | −0.61 | 0.10 | −0.04 | 0.45 | 0.04 | 0.22 | 0.17 | 0.39 | |
HAC | −0.96 | −0.97 | −0.72 | −0.51 | −0.79 | 0.61 | 0.05 | 0.41 | −0.19 | 0.67 | −0.17 | 0.08 | −0.39 | −0.05 | −0.21 | −0.17 | −0.35 | |
TEB | 0.73 | 0.76 | −0.72 | 0.96 | 0.96 | −0.33 | −0.25 | −0.42 | 0.04 | −0.36 | −0.03 | −0.15 | 0.14 | 0.10 | 0.15 | 0.17 | 0.06 | |
CEC | 0.54 | 0.57 | −0.51 | 0.96 | 0.89 | −0.18 | −0.29 | −0.36 | −0.02 | −0.19 | −0.10 | −0.16 | 0.03 | 0.10 | 0.11 | 0.15 | −0.06 | |
BS | 0.80 | 0.81 | −0.79 | 0.96 | 0.89 | −0.46 | −0.11 | −0.51 | 0.20 | −0.46 | 0.02 | −0.16 | 0.19 | 0.14 | 0.10 | 0.21 | 0.18 | |
EC | −0.61 | −0.54 | 0.61 | −0.33 | −0.18 | −0.46 | −0.12 | 0.44 | −0.32 | 0.94 | 0.02 | 0.21 | −0.14 | −0.14 | −0.02 | −0.16 | −0.21 | |
TOC | 0.03 | 0.00 | 0.05 | −0.25 | −0.29 | −0.11 | −0.12 | −0.17 | 0.83 | −0.09 | 0.16 | 0.26 | 0.00 | −0.03 | 0.01 | 0.03 | 0.24 | |
Ntot | −0.37 | −0.37 | 0.41 | −0.42 | −0.36 | −0.51 | 0.44 | −0.17 | −0.69 | 0.32 | −0.09 | −0.11 | 0.19 | −0.17 | 0.13 | −0.11 | 0.13 | |
C-N | 0.22 | 0.20 | −0.19 | 0.04 | −0.02 | 0.20 | −0.32 | 0.83 | −0.69 | −0.24 | 0.16 | 0.27 | −0.12 | 0.06 | −0.05 | 0.07 | 0.08 | |
Cu | −0.66 | −0.61 | 0.67 | −0.36 | −0.19 | −0.46 | 0.94 | −0.09 | 0.32 | −0.24 | 0.09 | 0.12 | −0.18 | −0.05 | −0.18 | −0.18 | −0.25 | |
Zn | 0.07 | 0.10 | −0.17 | −0.03 | −0.10 | 0.02 | 0.02 | 0.16 | −0.09 | 0.16 | 0.09 | 0.13 | 0.17 | −0.03 | 0.00 | 0.25 | 0.27 | |
Cd | −0.05 | −0.04 | 0.08 | −0.15 | −0.16 | −0.16 | 0.21 | 0.26 | −0.11 | 0.27 | 0.12 | 0.13 | 0.13 | −0.21 | 0.02 | 0.25 | 0.21 | |
Cr | 0.47 | 0.45 | −0.39 | 0.14 | 0.03 | 0.19 | −0.14 | 0.00 | 0.19 | −0.12 | −0.18 | 0.17 | 0.13 | −0.11 | −0.13 | 0.22 | 0.82 | |
Ni | 0.12 | 0.04 | −0.05 | 0.10 | 0.10 | 0.14 | −0.14 | −0.03 | −0.17 | 0.06 | −0.05 | −0.03 | −0.21 | −0.11 | 0.07 | −0.09 | −0.16 | |
Pb | 0.16 | 0.22 | −0.21 | 0.15 | 0.11 | 0.10 | −0.02 | 0.01 | 0.13 | −0.05 | −0.18 | 0.00 | 0.02 | −0.13 | 0.07 | −0.18 | −0.17 | |
Mn | 0.15 | 0.17 | −0.17 | 0.17 | 0.15 | 0.21 | −0.16 | 0.03 | −0.11 | 0.07 | −0.18 | 0.25 | 0.25 | 0.22 | −0.09 | −0.18 | 0.33 | |
Fe | 0.43 | 0.39 | −0.35 | 0.06 | −0.06 | 0.18 | −0.21 | 0.24 | 0.13 | 0.08 | −0.25 | 0.27 | 0.21 | 0.82 | −0.16 | −0.17 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żołnowski, A.C.; Wyszkowski, M. Mineral Neutralizers as a Tool for Improving the Properties of Soil Contaminated with Copper. Minerals 2022, 12, 895. https://doi.org/10.3390/min12070895
Żołnowski AC, Wyszkowski M. Mineral Neutralizers as a Tool for Improving the Properties of Soil Contaminated with Copper. Minerals. 2022; 12(7):895. https://doi.org/10.3390/min12070895
Chicago/Turabian StyleŻołnowski, Andrzej Cezary, and Mirosław Wyszkowski. 2022. "Mineral Neutralizers as a Tool for Improving the Properties of Soil Contaminated with Copper" Minerals 12, no. 7: 895. https://doi.org/10.3390/min12070895
APA StyleŻołnowski, A. C., & Wyszkowski, M. (2022). Mineral Neutralizers as a Tool for Improving the Properties of Soil Contaminated with Copper. Minerals, 12(7), 895. https://doi.org/10.3390/min12070895