Gemological and Spectroscopic Characteristics of “Jedi” Spinel from Man Sin, Myanmar
Abstract
:1. Introduction
2. Regional Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. X-ray Fluorescence (EDXRF)
3.2.2. Raman Spectroscopy
3.2.3. Fourier Transform Infrared (FTIR) Spectroscopy
3.2.4. UV-Vis Spectrophotometry
3.2.5. Fluorescence Spectroscopy
3.2.6. DiamondView
4. Results and Discussion
4.1. Gemological Characteristics and Inclusions
4.2. Major Element Geochemistry
4.3. Spectroscopy
4.3.1. UV-Vis Spectrophotometer
4.3.2. Raman Spectroscopy
4.3.3. Fourier Transform Infrared (FTIR) Spectroscopy
4.3.4. Fluorescence Spectroscopy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenaz, D.; Lughi, V.; Perugini, D.; Petrelli, M.; Turco, G.; Schmitz, B. MgAl2O4 spinels from Allende and NWA 763 carbonaceous chondrites: Structural refinement, cooling history, and trace element contents. Meteorit. Planet. Sci. 2019, 54, 3089–3100. [Google Scholar] [CrossRef]
- Wang, W.Q.; Li, G. Current status of resources and commerce of spinel. China Treasure Jade 2022, 2, 70–78. [Google Scholar]
- Pardieu, V. Hunting for “Jedi” Spinels in Mogok. Gems Gemol. 2014, 50, 46–57. [Google Scholar] [CrossRef]
- Hill, R.J.; Craig, J.R.; Gibbs, G.V. Systematics of the spinel structure type. Phys. Chem. Miner. 1979, 4, 317–339. [Google Scholar] [CrossRef]
- Pluthametwisute, T.; Wanthanachaisaeng, B.; Saiyasombat, C.; Sutthirat, C. Minor Elements and Color Causing Role in Spinel: Multi-Analytical Approaches. Minerals 2022, 12, 928. [Google Scholar] [CrossRef]
- Hålenius, U.; Skogby, H.; Andreozzi, G.B. Influence of cation distribution on the optical absorption spectra of Fe 3+ -bearing spinel s.s. -hercynite crystals: Evidence for electron transitions in VI Fe 2+-VI Fe 3+ clusters. Phys. Chem. Miner. 2002, 29, 319–330. [Google Scholar] [CrossRef]
- Iyer, L.A.N. The geology and gemstones of the Mogok Stone Tract, Burma. Geol. Surv. India Mem. 1953, 82, 100. [Google Scholar]
- Phyo, M.M.; Bieler, E.; Franz, L.; Balmer, W.; Krzemnicki, M.S. Spinel from Mogok, Myanmar—A Detailed Inclusion Study by Raman Microspectroscopy and Scanning Electron Microscopy. J. Gemmol. 2019, 36, 418–435. [Google Scholar] [CrossRef]
- Searle, D.L. The Mogok belt of Burma and its relationship to the Himalayan orogeny. In Proceedings of the International Geological Congress, Report of the Twenty-Second Session, New Delhi, India, 14–22 December 1964; Volume 11, pp. 132–161. [Google Scholar]
- Keller, P.C. The Rubies of Burma: A Review of the Mogok Stone Tract. Gems Gemol. 1983, 19, 209–219. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Htay, M.T.; Htun, K.M.; Win, M.N.; Oo, T.; Hlaing, T. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. J. Asian Earth Sci. 2007, 29, 891–910. [Google Scholar] [CrossRef]
- Yu, X. Colored Gemology; Geological Publishing House: Bath, UK, 2009; pp. 168–172. [Google Scholar]
- Li, X.; Zhou, X.; Yan, C.; Li, Y. Division and characteristics of the geotectonic units of Myanmar. Geol. Resour. 2017, 26, 99–104. [Google Scholar]
- Sun, J.; Wu, Z.; Cheng, H.; Zhang, Z.; Frost, R.L. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 158–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, M.; Frost, R.L.; Williams, P.A.; Theo Kloprogge, J. Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. J. Raman Spectrosc. 2002, 33, 62–66. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, X. Inclusions of spinel from Burma. J. Gems Gemmol. 2018, 20, 18–23. [Google Scholar]
- Xiao, L. Gemological characteristics and commercial evaluation of Burmese spinel. Jewelry 1992, 1, 18–20. [Google Scholar]
- Giuliani, G.; Fallick, A.E.; Boyce, A.J.; Pardieu, V.; Pham, V.L. Pink and Red Spinels In Marble: Trace Elements, Oxygen Isotopes, and Sources. Can. Mineral. 2017, 55, 743–761. [Google Scholar] [CrossRef]
- Malsy, A.; Klemm, L. Distinction of Gem Spinels from the Himalayan Mountain Belt. CHIMIA Int. J. Chem. 2010, 64, 741. [Google Scholar] [CrossRef]
- Peretti, A.; Günther, D. Spinel from Namya. Contrib. Gemol. 2003, 2, 15–18. [Google Scholar]
- Tsai, T.-H.; D’Haenens-Johansson, U.F.S. Rapid gemstone screening and identification using fluorescence spectroscopy. Appl. Opt. 2021, 60, 3412. [Google Scholar] [CrossRef]
- Andreozzi, G.B.; D’Ippolito, V.; Skogby, H.; Hålenius, U.; Bosi, F. Color mechanisms in spinel: A multi-analytical investigation of natural crystals with a wide range of coloration. Phys. Chem. Miner. 2018, 46, 343–360. [Google Scholar] [CrossRef]
- Gorghinian, A.; Mottana, A.; Rossi, A.; Oltean, F.M.; Esposito, A.; Marcelli, A. Investigating the colour of spinel: 1. Red gem-quality spinels (“balas”) from Ratnapura (Sri Lanka). Rend. Lincei 2013, 24, 127–140. [Google Scholar] [CrossRef]
- Belley, P.; Palke, A. Purple Gem Spinel from Vietnam and Afghanistan: Comparison of Trace Element Chemistry, Cause of Color, and Inclusions. Gems Gemol. 2021, 57, 228–238. [Google Scholar] [CrossRef]
- Ishii, M.; Hiraishi, J.; Yamanaka, T. Structure and lattice vibrations of Mg-Al spinel solid solution. Phys. Chem. Miner. 1982, 8, 64–68. [Google Scholar] [CrossRef]
- O’Horo, M.P.; Frisillo, A.L.; White, W.B. Lattice vibrations of MgAl2O4 spinel. J. Phys. Chem. Solids 1973, 34, 23–28. [Google Scholar] [CrossRef]
- Caracas, R.; Banigan, E.J. Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density functional perturbation theory. Phys. Earth Planet. Inter. 2009, 174, 113–121. [Google Scholar] [CrossRef] [Green Version]
- D’Ippolito, V.; Andreozzi, G.B.; Bersani, D. Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 2015, 46, 1255–1264. [Google Scholar] [CrossRef]
- Lenaz, D.; Lughi, V. Raman study of MgCr2O4–Fe2+ Cr2O4 and MgCr2O4–MgFe2 3+ O4 synthetic series: The effects of Fe2+ and Fe3+ on Raman shifts. Phys. Chem. Miner. 2013, 40, 491–498. [Google Scholar] [CrossRef]
- Allen, G.C.; Paul, M. Chemical Characterization of Transition Metal Spinel-Type Oxides by Infrared Spectroscopy. Appl. Spectrosc. 1995, 49, 451–458. [Google Scholar] [CrossRef]
- Preudhomme, J.; Tarte, P. Infrared studies of spinels—I. Spectrochim. Acta Part A Mol. Spectrosc. 1971, 27, 961–968. [Google Scholar] [CrossRef]
- Preudhomme, J.; Tarte, P. Infrared studies of spinels—III: The normal II–III spinels. Spectrochim. Acta Part A Mol. Spectrosc. 1971, 27, 1817–1835. [Google Scholar] [CrossRef]
- Karthik, H.G.S.; Menon, S.G.; Hebbar, N.D.; Choudhari, K.S.C.; Kulkarni, S.D. Effect of Zn substitution in Cr3+ doped MgAl2O4 mixed spinel nanoparticles on red/NIR emission properties. Mater. Res. Bull. 2019, 111, 294–300. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Shi, Z.; Shi, J.; Liu, Y.; He, L. Site occupation and fluorescence properties of MgAl2O4: Eu3+ phosphors. Mater. Sci. Semicond. Process. 2022, 137, 106233. [Google Scholar] [CrossRef]
Sample | MS-1 | MS-2 | MS-3 | MS-4 | MS-5 | MS-6 | MS-7 | MS-8 | MS-9 | MS-10 | MS-11 | MS-12 | MS-13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | 68.585 | 70.045 | 66.82 | 69.787 | 67.005 | 68.026 | 67.623 | 67.197 | 65.853 | 67.467 | 66.35 | 67.96 | 68.654 |
MgO | 24.691 | 24.114 | 29.098 | 23.736 | 23.961 | 23.648 | 29.598 | 28.924 | 29.23 | 28.197 | 25.248 | 28.304 | 27.597 |
Cr2O3 | 3.412 | 1.084 | 1.257 | 1.195 | 0.996 | 0.633 | 0.322 | 0.672 | 0.761 | 0.966 | 1.092 | 0.298 | 0.427 |
SiO2 | 1.301 | 1.027 | 1.156 | 3.617 | 5.636 | 5.636 | 0.82 | 1.001 | 2.47 | 1.508 | 4.42 | 1.411 | 1.067 |
ZnO | 0.18 | 2.303 | 0.351 | 0.292 | 0.448 | 0.919 | 0.105 | 0.416 | 0.26 | 0.334 | 0.949 | 0.265 | 0.617 |
V2O3 | 0.034 | 0.092 | 0.114 | 0.36 | 0.409 | 0.182 | 0.331 | 0.353 | 0.112 | 0.114 | 0.146 | 0.071 | 0.133 |
FeO | 0.244 | 0.395 | 0.127 | 0.426 | 0.157 | 0.179 | 0.101 | 0.102 | 0.093 | 0.1 | 0.151 | 0.076 | 0.181 |
TiO2 | 0.012 | 0.344 | 0.302 | 0.032 | 0.096 | 0.032 | 0.011 | 0.122 | 0.026 | 0.13 | |||
K2O | 0.095 | 0.086 | 0.027 | 0.055 | 0.066 | 0.066 | 0.021 | 0.097 | 0.083 | 0.127 | 0.115 | 0.065 | |
CaO | 0.008 | 0.017 | 0.02 | 0.111 | 0.102 | 0.102 | 0.03 | 0.027 | 0.035 | 0.043 | 0.097 | 0.041 | 0.034 |
Sample | Al2O3 | MgO | Cr2O3 | SiO2 | ZnO | V2O3 | FeO | TiO2 | K2O | CaO |
---|---|---|---|---|---|---|---|---|---|---|
Range | 65.853–70.045 | 23.648–29.598 | 0.298–3.412 | 0.820–5.636 | 0.105–2.303 | 0.034–0.409 | 0.076–0.426 | 0.00–0.344 | 0.021–0.127 | 0.008–0.111 |
Average | 67.798 | 26.642 | 1.009 | 2.390 | 0.572 | 0.189 | 0.179 | 0.111 | 0.075 | 0.051 |
MS-1 | MS-2 | MS-3 | |
---|---|---|---|
Cr2O3 | 3.412 | 1.084 | 1.257 |
ZnO | 0.18 | 2.303 | 0.351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Li, G.; Weng, L. Gemological and Spectroscopic Characteristics of “Jedi” Spinel from Man Sin, Myanmar. Minerals 2022, 12, 1359. https://doi.org/10.3390/min12111359
Zhao L, Li G, Weng L. Gemological and Spectroscopic Characteristics of “Jedi” Spinel from Man Sin, Myanmar. Minerals. 2022; 12(11):1359. https://doi.org/10.3390/min12111359
Chicago/Turabian StyleZhao, Longpei, Geng Li, and Liqun Weng. 2022. "Gemological and Spectroscopic Characteristics of “Jedi” Spinel from Man Sin, Myanmar" Minerals 12, no. 11: 1359. https://doi.org/10.3390/min12111359
APA StyleZhao, L., Li, G., & Weng, L. (2022). Gemological and Spectroscopic Characteristics of “Jedi” Spinel from Man Sin, Myanmar. Minerals, 12(11), 1359. https://doi.org/10.3390/min12111359