Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mineralogical Sequences and Mineral Distribution
3.2. Mineralogical Sequences
3.2.1. Sequence 1 (P1-48 to P1-54)
3.2.2. Sequence 2 (P1-26 a P1-40)
3.2.3. SEM/EDS High-Resolution Mineral Maps
3.2.4. Microfabric and SEM-EDS Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozo, M.; Calvo, J. An Overview of Authigenic Magnesian Clays. Minerals 2018, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Netto, P.R.A.; Pozo, M.; da Silva, M.D.; Mexias, A.S.; Gomes, M.E.B.; Borghi, L.; Rios-Netto, A.M. Authigenic Mg-Clay Assemblages in the Barra Velha Formation (Upper Cretaceous) from Santos Basin (Brazil): The Role of Syngenetic and Diagenetic Process. Appl. Clay Sci. 2021, 216, 106339. [Google Scholar] [CrossRef]
- Cuevas, J.; Ruiz, A.; Fernández, R.; González-Santamaría, D.; Angulo, M.; Ortega, A.; Torres, E.; Turrero, M. Authigenic Clay Minerals from Interface Reactions of Concrete-Clay Engineered Barriers: A New Perspective on Mg-Clays Formation in Alkaline Environments. Minerals 2018, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.D.; Gomes, M.E.B.; Mexias, A.S.; Pozo, M.; Drago, S.M.; Célia, R.S.; Silva, L.A.C.; Netto, P.; Gomes, L.B.; Porcher, C.C.; et al. Mineralogical Study of Levels with Magnesian Clay Minerals in the Santos Basin, Aptian Pre-Salt Brazil. Minerals 2021, 11, 970. [Google Scholar] [CrossRef]
- Pozo, M.; Galán, E. (Eds.) Magnesian Clay Deposits: Mineralogy and Origin. In Magnesian Clays: Characterization, Origin and Applications; AIPEA Educational Series; Digilabs: Bari, Italy, 2015; ISBN 978-88-7522-093-8. [Google Scholar]
- Brindley, G.W.; Bistt, D.L.; Wan, H.-M. The Nature of Kerolite, Its Relation to Talc and Stevensite. Mineral. Mag. 1977, 4, 443–452. [Google Scholar] [CrossRef]
- Moreira, J.L.P.; Madeira, C.V.; Gil, J.A.; Machado, M.A.P. Bacia de Santos. Bol. De Geociências Da Petrobras 2007, 15, 531–549. [Google Scholar]
- Pereira, M.J.; Macedo, J.M. A Bacia de Santos: Perspectivas de Uma Nova Província Petrolífera Na Plataforma Continental Sudeste Brasileira. Bol. De Geocienc. Da Petrobras 1990, 4, 3–11. [Google Scholar]
- Carminatti, M.; Dias, J.; Wolff, B. From Turbidites to Carbonates: Breaking Paradigms in Deep Waters. In Proceedings of the All Days, Houston, TX, USA, 4 May 2009; OTC: Houston, TX, USA, 2009. [Google Scholar]
- Milani, E.J.; Rangel, H.D.; Bueno, G.V.; Stica, J.M.; Winter, W.R.; Caixeta, J.M.; Pessoa-Neto, O.C. Bacias Sedimentares Brasileiras: Cartas Estratigráficas—Introdução. Bol. De Geociências Da Petrobras 2017, 15, 183–205. [Google Scholar]
- Wright, V.P.; Barnett, A.J. An Abiotic Model for the Development of Textures in Some South Atlantic Early Cretaceous Lacustrine Carbonates. Geol. Soc. Lond. Spec. Publ. 2015, 418, 209–219. [Google Scholar] [CrossRef]
- Terra, G.J.S.; Spadini, A.R.; França, A.B.; Sombra, C.L.; Zambonato, E.E.; Juschaks, L.C.S.; Arienti, L.M.; Erthal, M.M.; Blauth, M.; Franco, M.P.; et al. Classificação de Rochas Carbonáticas Aplicável Às Bacias Sedimentares Brasileiras. Bol. De Geociências Da Petrobras 2010, 18, 9–29. [Google Scholar]
- Tosca, N.J.; Wright, V.P. The Formation and Diagenesis of Mg-Clay Minerals in Lacustrine Carbonate Reservoirs. In Proceedings of the Adapted from oral presentation given at 2014 AAPG Annual Convention and Exhibition, Houston, TX, USA, 6–9 April 2014. [Google Scholar]
- Wright, P.; Tosca, N. A Geochemical Model for the Formation of the Pre-Salt Reservoirs, Santos Basin, Brazil: Implications for Understanding Reservoir Distribution. AAPG Annu. Conv. Exhib. 2016, 51304, 1–32. [Google Scholar]
- Herlinger, R.; Zambonato, E.E.; de Ros, L.F. Influence of Diagenesis on the Quality of Lower Cretaceous Pre-Salt Lacustrine Carbonate Reservoirs from Northern Campos Basin, Offshore Brazil. J. Sediment. Res. 2017, 87, 1285–1313. [Google Scholar] [CrossRef] [Green Version]
- Lima, B.E.M.; de Ros, L.F. Deposition, Diagenetic and Hydrothermal Processes in the Aptian Pre-Salt Lacustrine Carbonate Reservoirs of the Northern Campos Basin, Offshore Brazil. Sediment. Geol. 2019, 383, 55–81. [Google Scholar] [CrossRef]
- Gomes, J.P.; Bunevich, R.B.; Tedeschi, L.R.; Tucker, M.E.; Whitaker, F.F. Facies Classification and Patterns of Lacustrine Carbonate Deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-Salt. Mar. Pet. Geol. 2020, 113, 104176. [Google Scholar] [CrossRef]
- Mercedes-Martín, R.; Ayora, C.; Tritlla, J.; Sánchez-Román, M. The Hydrochemical Evolution of Alkaline Volcanic Lakes: A Model to Understand the South Atlantic Pre-Salt Mineral Assemblages. Earth-Sci. Rev. 2019, 198, 102938. [Google Scholar] [CrossRef]
- Dickson, J.A.D. A Modified Staining Technique for Carbonates in Thin Section. Nature 1965, 205, 587. [Google Scholar] [CrossRef]
- Garcia, S.F.D.M.; Filho, A.D.; de Lamotte, D.F.; Rudkiewicz, J.L. Análise de volumes de sal em restauração estrutural: Um exemplo na Bacia de Santos. Rev. Bras. De Geocienc. 2012, 42, 433–450. [Google Scholar] [CrossRef]
- Pietzsch, R.; Oliveira, D.M.; Tedeschi, L.R.; Queiroz Neto, J.V.; Figueiredo, M.F.; Vazquez, J.C.; de Souza, R.S. Palaeohydrology of the Lower Cretaceous Pre-Salt Lacustrine System, from Rift to Post-Rift Phase, Santos Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 507, 60–80. [Google Scholar] [CrossRef]
- Schultz, L.G. Quantitative Interpretation of Mineralogical Composition from X-ray and Chemical Data for the Pierre Shale. Geol. Surv. Prof. Pap. 1964, 391-C, C1–C30. [Google Scholar]
- Van der Marel, H.W. Quantitative Analysis of Clay Minerals and Their Admixtures. Contrib. Mineral. Petrol. 1966, 12, 96–138. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. II. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures. J. Appl. Crystallogr. 1974, 7, 526–531. [Google Scholar] [CrossRef]
- Grabowska-Olszewska, B.; Osipov, V.; Sokolov, V. Atlas of the Microstructure of Clay Soils, 1st ed.; Panstwowe Wydawnictwo Navkowe: Varsovia, Poland, 1984; Volume 1, ISBN 8301004142. [Google Scholar]
- Saller, A.; Rushton, S.; Buambua, L.; Inman, K.; McNeil, R.; Dickson, J.A.D.T. Presalt Stratigraphy and Depositional Systems in the Kwanza Basin, Offshore Angola. AAPG Bull. 2016, 100, 1135–1164. [Google Scholar] [CrossRef]
- Wright, V.P. The Mantle, CO2 and the Giant Aptian Chemogenic Lacustrine Carbonate Factory of the South Atlantic: Some Carbonates Are Made, Not Born. Sedimentology 2020, 69, 47–73. [Google Scholar] [CrossRef]
- Wright, V.P.; Barnett, A.J. The Textural Evolution and Ghost Matrices of the Cretaceous Barra Velha Formation Carbonates from the Santos Basin, Offshore Brazil. Facies 2020, 66, 7. [Google Scholar] [CrossRef]
- Cuadros, J. Clay Minerals Interaction with Microorganisms: A Review. Clay Miner. 2017, 52, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.; Beveridge, T.J. Mineral Formation by Bacteria in Natural Microbial Communities. FEMS Microbiol. Ecol. 1998, 26, 79–88. [Google Scholar] [CrossRef]
- Tosca, N.J.; Wright, V.P. Diagenetic Pathways Linked to Labile Mg-Clays in Lacustrine Carbonate Reservoirs: A Model for the Origin of Secondary Porosity in the Cretaceous Pre-Salt Barra Velha Formation, Offshore Brazil. Geol. Soc. Lond. Spec. Publ. 2018, 435, 33–46. [Google Scholar] [CrossRef]
- Farias, F.; Szatmari, P.; Bahniuk, A.; França, A.B. Evaporitic Carbonates in the Pre-Salt of Santos Basin—Genesis and Tectonic Implications. Mar. Pet. Geol. 2019, 105, 251–272. [Google Scholar] [CrossRef]
- Muniz, M.C.; Bosence, D.W.J. Pre-Salt Microbialites from the Campos Basin (Offshore Brazil): Image Log Facies, Facies Model and Cyclicity in Lacustrine Carbonates. Geol. Soc. Spec. Publ. 2015, 418, 221–242. [Google Scholar] [CrossRef]
- Kirkham, A.; Tucker, M.E. Thrombolites, Spherulites and Fibrous Crusts (Holkerian, Purbeckian, Aptian): Context, Fabrics and Origins. Sediment. Geol. 2018, 374, 69–84. [Google Scholar] [CrossRef]
- Burne, R.V.; Moore, L.S. Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios 1987, 2, 241–254. [Google Scholar] [CrossRef]
- Chafetz, H.; Barth, J.; Cook, M.; Guo, X.; Zhou, J. Origins of Carbonate Spherulites: Implications for Brazilian Aptian Pre-Salt Reservoir. Sediment. Geol. 2018, 365, 21–33. [Google Scholar] [CrossRef]
- Claes, H.; Miranda, T.; Falcão, T.C.; Soete, J.; Mohammadi, Z.; Zieger, L.; Erthal, M.M.; Aguillar, J.; Schmatz, J.; Busch, A.; et al. Model for Calcite Spherulite Formation in Organic, Clay-Rich, Lacustrine Carbonate Shales (Barbalha Formation, Aptian, Araripe Basin, NE Brazil). Mar. Pet. Geol. 2021, 128, 104988. [Google Scholar] [CrossRef]
- Mercedes-Martín, R.; Rogerson, M.R.; Brasier, A.T.; Vonhof, H.B.; Prior, T.J.; Fellows, S.M.; Reijmer, J.J.G.; Billing, I.; Pedley, H.M. Growing Spherulitic Calcite Grains in Saline, Hyperalkaline Lakes: Experimental Evaluation of the Effects of Mg-Clays and Organic Acids. Sediment. Geol. 2016, 335, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Mercedes-Martín, R.; Rao, A.; Rogerson, M.; Sánchez-Román, M. Effects of Salinity, Organic Acids and Alkalinity on the Growth of Calcite Spherulites: Implications for Evaporitic Lacustrine Sedimentation. Depos. Rec. 2021, 1–22. [Google Scholar] [CrossRef]
- Léveillé, R.J.; Fyfe, W.S.; Longstaffe, F.J. Geomicrobiology of Carbonate-Silicate Microbialites from Hawaiian Basaltic Sea Caves. Chem. Geol. 2000, 169, 339–355. [Google Scholar] [CrossRef]
- Del Buey, P.; Cabestrero, Ó.; Arroyo, X.; Sanz-Montero, M.E. Microbially Induced Palygorskite-Sepiolite Authigenesis in Modern Hypersaline Lakes (Central Spain). Appl. Clay Sci. 2018, 160, 9–21. [Google Scholar] [CrossRef]
- Zeyen, N.; Benzerara, K.; Li, J.; Groleau, A.; Balan, E.; Robert, J.-L.; Estève, I.; Tavera, R.; Moreira, D.; López-García, P. Formation of Low-T Hydrated Silicates in Modern Microbialites from Mexico and Implications for Microbial Fossilization. Front. Earth Sci. 2015, 3, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Burne, R.V.; Moore, L.S.; Christy, A.G.; Troitzsch, U.; King, P.L.; Carnerup, A.M.; Joseph Hamilton, P. Stevensite in the Modern Thrombolites of Lake Clifton, Western Australia: A Missing Link in Microbialite Mineralization? Geology 2014, 42, 575–578. [Google Scholar] [CrossRef] [Green Version]
- Riding, R. Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Guidry, S.A. Deposition and Diagenesis of Mammoth Hot Springs Travertine, Yellowstone National Park, Wyoming, U.S.A. Can. J. Earth Sci. 2003, 40, 1515–1529. [Google Scholar] [CrossRef]
- Grasby, S.E.; van Everdingen, R.O.; Bednarski, J.; Lepitzki, D.A.W. Travertine Mounds of the Cave and Basin National Historic Site, Banff National Park. Can. J. Earth Sci. 2003, 40, 1501–1513. [Google Scholar] [CrossRef]
- Pentecost, A.; Coletta, P. The Role of Photosynthesis and CO2 Evasion in Travertine Formation: A Quantitative Investigation at an Important Travertine-Depositing Hot Spring, Le Zitelle, Lazio, Italy. J. Geol. Soc. Lond. 2007, 164, 843–853. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Experimental Examination of the Mg-Silicate-Carbonate System at Ambient Temperature: Implications for Alkaline Chemical Sedimentation and Lacustrine Carbonate Formation. Geochim. Cosmochim. Acta 2018, 225, 80–101. [Google Scholar] [CrossRef]
- Chase, J.E.; Arizaleta, M.L.; Tutolo, B.M. A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. Minerals 2021, 11, 106. [Google Scholar] [CrossRef]
- Millot, G. Geology of Clays: Weathering, Sedmentology and Geochemistry, 1st ed.; Springer: Berlin, Germany, 1970; ISBN 978-3-662-41609-9. [Google Scholar]
- Jones, B.F. Clay Mineral Diagenesis in Lacustrine Sediments; Mumptom, F.A., Ed.; U.S. Geological Survey: Reston, VA, USA, 1986; Volume 1578.
- Galán, E.; Pozo, M. Palygorskite and Sepiolite Deposits in Continental Environments. Description, Genetic Patterns and Sedimentary Settings. In Developments in Clay Science; Galán, E., Singer, A., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2011; Volume 3, pp. 125–173. [Google Scholar]
- Tosca, N. Geochemical Pathways to Mg-Silicate Formation. In Magnesian Clays: Characterization, Origin and Applications; Pozo, M., Galán, E., Eds.; AIPEA Educational Series; Digilabs: Bari, Italy, 2015; ISBN 978-88-7522-093-8. [Google Scholar]
- Lasaga, A.C. Kinetic Theory in the Earth Sciences; Princeton University Press: Princeton, NJ, USA, 1998; ISBN 9781400864874. [Google Scholar] [CrossRef]
- Stumm, W. Chemistry of the Solid Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1992. [Google Scholar]
- Zhang, J.; Huang, F.; Lin, Z. Progress of Nanocrystalline Growth Kinetics Based on Oriented Attachment. Nanoscale 2010, 2, 18–34. [Google Scholar] [CrossRef]
- Khoury, H.N.; Eberl, D.D.; Jones, B.F. Origin of Magnesium Clays from the Amargosa Desert, Nevada. Clays Clay Miner. 1982, 30, 327–336. [Google Scholar] [CrossRef]
- Hay, R.L. Magnesium-Rich Clays of the Meerschaum Mines in the Amboseli Basin, Tanzania and Kenya. Clays Clay Miner. 1995, 43, 455–466. [Google Scholar] [CrossRef]
- Pozo, M.; Casas, J. Origin of Kerolite and Associated Mg Clays in Palustrine-Lacustrine Environments. The Esquivias Deposit (Neogene Madrid Basin, Spain). Clay Miner. 1999, 34, 395–418. [Google Scholar] [CrossRef]
- Deocampo, D.M.; Cuadros, J.; Wing-dudek, T.; Olives, J.; Amouric, M. Saline Lake Diagenesis as Revealed by Coupled Mineralogy and Geochemistry of Multiple Ultrafine Clay Phases: Pliocene Olduvai Gorge, Tanzania. Am. J. Sci. 2009, 309, 834–868. [Google Scholar] [CrossRef]
- Jones, B.F.; Galán, E. Sepiolite and Palygorskite. Rev. Mineral. Geochem. 1988, 19, 631–674. [Google Scholar]
- Stoessell, R.K. 25 °C and 1 Atm Dissolution Experiments of Sepiolite and Kerolite. Geochim. et Cosmochim. Acta 1988, 52, 365–374. [Google Scholar] [CrossRef]
- Tosca, N.J.; Masterson, A.L. Chemical Controls on Incipient Mg-Silicate Crystallization at 25 °C: Implications for Early and Late Diagenesis. Clay Miner. 2014, 49, 165–194. [Google Scholar] [CrossRef] [Green Version]
- Pietzsch, R.; Tedeschi, L.R.; Oliveira, D.M.; dos Anjos, C.W.D.; Vazquez, J.C.; Figueiredo, M.F. Environmental Conditions of Deposition of the Lower Cretaceous Lacustrine Carbonates of the Barra Velha Formation, Santos Basin (Brazil), Based on Stable Carbon and Oxygen Isotopes: A Continental Record of PCO2 during the Onset of the Oceanic Anoxic Event 1a (OAE 1a) Interval? Chem. Geol. 2020, 535, 119457. [Google Scholar] [CrossRef]
- Szatmari, P.; Milani, E.J. Tectonic Control of the Oil-Rich Large Igneous-Carbonate-Salt Province of the South Atlantic Rift. Mar. Pet. Geol. 2016, 77, 567–596. [Google Scholar] [CrossRef]
- Badaut, D.; Risacher, F. Authigenic Smectite on Diatom Frustules in Bolivian Saline Lakes. Geochim. Cosmochim. Acta 1983, 41, 363–375. [Google Scholar] [CrossRef]
- Darragi, F.; Tardy, Y. Authigenic Trioctahedral Smectites Controlling PH, Alkalinity, Silica and Magnesium Concentrations in Alkaline Lakes. Chem. Geol. 1987, 63, 59–72. [Google Scholar] [CrossRef]
- Martín de Vidales, J.L.; Pozo, M.; Casas, J. Evidences of Stevensite Formation from Kerolite/Stevensite Mixed Layers. Influence of Alkalinity and Silica Activities. In Advances in Clay Minerals; Ortega-Huertas, M., López-Galindo, A., Palomo-Delgado, I., Eds.; Sociedade Española de Arcillas: Granada, Spain, 1996; pp. 134–136. ISBN 84-8499-482-1. [Google Scholar]
Seq. | Samp. | Phy (%) | Qtz (%) | Cal (%) | Dol (%) | Sme (%) | Ker (%) | Ilt (%) | MF | Clay Assemb. |
---|---|---|---|---|---|---|---|---|---|---|
Sequence 2 | P1.26 | 35 | 2 | 63 | - | 90 | 10 | - | MF-2A | CB |
P1.27 | 25 | 1 | 72 | 2 | 32 | 68 | Tr | MF-2A | B | |
P1.28 | 22 | - | 76 | 1 | 9 | 91 | - | MF-4A | B | |
P1.29 | 49 | 4 | 47 | - | - | 100 | - | MF-4A | A | |
P1.30 | 78 | 6 | 15 | 1 | - | 100 | - | MF-4A | A | |
P1.31 | 48 | - | 49 | 3 | - | 100 | - | MF-4A | A | |
P1.32 | 34 | - | 55 | 11 | 7 | 93 | - | MF-4B | B | |
P1.33 | 17 | 1 | 77 | 6 | - | 100 | - | MF-3A | A | |
P1.34 | 19 | - | 69 | 12 | - | 100 | Tr | MF-1A | A | |
P1.35 | 27 | 1 | 64 | 8 | - | 100 | - | MF-4B | A | |
P1.36 | 44 | - | 46 | 9 | - | 100 | - | MF-4A | A | |
P1.37 | 51 | 2 | 43 | 4 | - | 100 | - | MF-2A | A | |
P1.38 | 21 | 2 | 77 | 1 | 100 | - | - | MF-4B | C | |
P1.39 | 26 | 2 | 71 | 1 | 100 | - | - | MF-1A | C | |
P1.40 | 31 | 4 | 64 | 1 | 100 | - | - | MF-1C | C | |
Sequence 1 | P1.48 | 34 | 1 | 61 | 5 | 89 | 11 | - | MF-2A | A |
P1.49 | 31 | 1 | 65 | 3 | 48 | 52 | - | MF-4A | B | |
P1.50 | 16 | 2 | 76 | 7 | - | 100 | - | MF-4A | A | |
P1.51 | 16 | - | 69 | 15 | 64 | 36 | - | MF-4A | CB | |
P1.52 | 17 | 2 | 55 | 26 | 74 | 26 | - | MF-1C | CB | |
P1.53 | 15 | 12 | 70 | 4 | 100 | - | Pr | MF-1C | C | |
P1.54 | 70 | 7 | 20 | 3 | 100 | - | Pr | MF-1C | C |
Analysis | Assemblages | |||||
---|---|---|---|---|---|---|
A | B | C | CB | |||
Ker | Stv | Stv | Sap | Stv | Sap | |
SiO2 | 60–61 | 59–62 | 62–63 | 57–66 | 61–66 | 59–62 |
Al2O3 | 0–1.08 | 1–3 | 0 | 3–5 | 0–1.02 | 3–6.5 |
MgO | 31–32 | 29–31 | 23–32 | 29–33 | 28–32 | 27–32 |
CaO | 0–0.83 | 0–1 | 0 | 0.54–2 | 0 | 0.4–2 |
Na2O | 3–3.08 | 2–3 | 0.7–2 | 1.64–3 | 0.6–2 | 3–4 |
K2O | 0 | 0–0.7 | 0 | 1.85 | 0–2 | 0 |
FeO | 0 | 0–0.5 | 0 | 0–1.24 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netto, P.R.A.; Pozo, M.; da Silva, M.D.; Gomes, M.E.B.; Mexias, A.; Ramnani, C.W.; Parizek-Silva, Y.; Borghi, L.; Rios-Netto, A.d.M. Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil). Minerals 2022, 12, 200. https://doi.org/10.3390/min12020200
Netto PRA, Pozo M, da Silva MD, Gomes MEB, Mexias A, Ramnani CW, Parizek-Silva Y, Borghi L, Rios-Netto AdM. Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil). Minerals. 2022; 12(2):200. https://doi.org/10.3390/min12020200
Chicago/Turabian StyleNetto, Paulo R. A., Manuel Pozo, Maurício Dias da Silva, Márcia Elisa Boscato Gomes, André Mexias, Camila Wense Ramnani, Yaro Parizek-Silva, Leonardo Borghi, and Aristóteles de Moraes Rios-Netto. 2022. "Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil)" Minerals 12, no. 2: 200. https://doi.org/10.3390/min12020200
APA StyleNetto, P. R. A., Pozo, M., da Silva, M. D., Gomes, M. E. B., Mexias, A., Ramnani, C. W., Parizek-Silva, Y., Borghi, L., & Rios-Netto, A. d. M. (2022). Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil). Minerals, 12(2), 200. https://doi.org/10.3390/min12020200