Distribution, Sedimentology and Origin of Mineralogical Assemblages from a Continental Na-bentonite Deposit in the Cretaceous Neuquén Basin (Argentina)
Abstract
:1. Introduction
2. Geological Setting and Stratigraphy
3. Materials and Methods
3.1. Fieldwork and Sampling
3.2. Experimental Methodology
4. Results
4.1. Lithofacies Description
4.2. Mineralogy
4.2.1. X-ray Diffraction
4.2.2. Infrared Spectroscopy
4.2.3. Thermal Analysis
4.2.4. Optical Microscopy
4.2.5. Scanning Electron Microscopy
4.2.6. Texture and Microfabric
4.3. Chemical Composition
5. Discussion
5.1. Paleoenvironmental Interpretation
5.2. Mineralogical Considerations
5.3. Formation of Authigenic Minerals
5.3.1. Dioctahedral Smectite
5.3.2. Analcime
5.3.3. Barite and Celestine
5.4. Geochemistry of Bentonites
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhour, F.; Reistch, D. Bentonites. In Industrial Minerals and Rocks: Commodities, Market, and Uses; Kogel, S.T., Trivedi, J.E., Barker, N.C., Krobowski, J.M., Eds.; Society for Mining, Meetallurgy, and Explorations, Inc.: Littleton, CO, USA, 2006; pp. 357–368. [Google Scholar]
- Impiccini, A.; Valles, J. Bentonitas. In Geología y Recursos Naturales de la Provincia del Neuquén; Leanza, J.M., Arregui, H.A., Carbone, C., Danieli, O., Vallés, J.C., Eds.; Asociación Geológica Argentina: Buenos Aires, Argentina, 2011; pp. 755–762. [Google Scholar]
- Kramarz, C.; Garrido, A.; Forasiepi, A.C.; Bond, A.M.; Tambussi, M. Estratigrafía y vertebrados (Aves y Mammalia) de la Formación Cerro Bandera, Mioceno Temprano de la Provincia del Neuquén, Argentina. Rev. Geol. Chile 2005, 32, 273–291. [Google Scholar] [CrossRef]
- Barrio, C.A. Paleogeographic control of upper cretaceous tidal deposits, Neuquén Basin, Argentina. J. South Am. Earth Sci. 1990, 3, 31–49. [Google Scholar] [CrossRef]
- Musso, B.T.; Roehl, E.; Pettinari, G.; Vallés, J.M. Assessment of smectite-rich claystones from Northpatagonia for their use as liner materials in landfills. Appl. Clay Sci. 2010, 48, 438–445. [Google Scholar] [CrossRef]
- Andreis, P.E.; Zalba, R.E. Na and K bentonites from Argentina: Composition, origin and age, in A Clay Odyssey. In Proceedings of the 12th International Clay Conference, Bahia Blanca, Argentina, 22–28 July 2001; pp. 41–48. [Google Scholar]
- Gozalvez, E.; Zappettini, C. Minerales Industriales de la República Argentina; Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino: Buenos Aires, Argentina, 2004. [Google Scholar]
- Salduondo, J.; Comerio, M.; Cravero, F.; Etcheverry, R. Mineralogical and Geochemical Analysis of Sodium Bentonites in Continental Settings: The Uspallata Group (Triassic) of the Cuyana Basin, Mendoza Province. J. S. Am. Earth Sci. 2020, 102, 102448. [Google Scholar] [CrossRef]
- Impiccini, A.; Vallés, J.M. Los depósitos de bentonita de Barda Negra y cerro Bandera, departamento Zapala, provincia del Neuquén, Argentina. Rev. Asoc. Geol. Argent. 2002, 57, 305–314. [Google Scholar]
- Anselmi, D.; Panza, G.; Cortés, J.L.; Ragona, J.M. Descripción Geológica de la Hoja 4569-II El Sombrero, Provincia del Chubut; Instituto de Geología y Recursos Minerales; Servicio Geológico Minero Argentino: Buenos Aires, Argentina, 2004. [Google Scholar]
- Fanti, F. Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada. Sediment. Geol. 2009, 217, 112–127. [Google Scholar] [CrossRef]
- Roberson, H.E. Petrology of Tertiary bentonites of Texas. J. Sediment. Res. 1964, 34, 401–411. [Google Scholar]
- Kadİr, S.; Külah, T.; Erkoyun, H.; Christidis, G.E.; Arslanyan, R. Geology, Mineralogy, Geochemistry, and Genesis of Bentonite Deposits in Miocene Volcano-Sedimentary Units of the Balikesir Region, Western Anatolia, Turkey. Clays Clay Miner. 2019, 67, 371–398. [Google Scholar] [CrossRef]
- Köster, M.H.; Gilg, H.A. Pedogenic, palustrine and groundwater dolomite formation in non-marine bentonites (Bavaria, Germany). Clay Miner. 2015, 50, 163–183. [Google Scholar] [CrossRef]
- Gopinath, T.R.; Schuster, H.D.; Schuckmann, W.K. Clay mineralogy and geochemistry of continental bentonite and their geological implications, Boa Vista, Campina Grande, PB. Rev. Bras. Geociências 1988, 18, 345–352. [Google Scholar] [CrossRef]
- Pozo, M.; Galán, E. (Eds.) Magnesian Clays. Characterization, Origin and Applications, No. 2; AIPEA Educational Series; Digilabs: Bari, Italy, 2015; p. 380. [Google Scholar]
- Musso, T.B.; Pettinari, G.; Pozo, M.; Jalil, M.E.R.; Gil-García, R.G. A new deposit of Na-bentonite from the Upper Cretaceous Anacleto Formation (Neuquén Basin, Argentina): Characterization and properties. Appl. Clay Sci. 2022, 220, 106461. [Google Scholar] [CrossRef]
- Chiappe, M.; Coria, L.M.; Dingus, R.A.; Jackson, L.; Chinsamy, F.; Fox, A. Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 1998, 396, 258–261. [Google Scholar] [CrossRef]
- Ducloux, A.H. Estratigrafía y tectónica de los estratos de dinosaurios del Neuquén. Boletín Inf. Pet. 1939, 16, 16–17. [Google Scholar]
- Roll, A. Über die Ortiz und Roca Schichten des oberen Kreide der Río Negro senke (Nord Patagonien), Neues Jahrb. Für Mineral. Geol. Und Paläontologie. 1941, 85, 144–190. [Google Scholar]
- Cazau, M.A.; Uliana, L.B. El Cretácico superior continental de la Cuenca Neuquina. In V° Congreso Geológico Argentino; Aspciacion Geológica Argentina: Buenos Aires, Argentina, 1973; pp. 131–163. [Google Scholar]
- Franzese, J.; Spalletti, L.; Pérez, D.G.; Macdonald, I. Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°–54°S). J. S. Am. Earth Sci. 2003, 16, 81–90. [Google Scholar] [CrossRef]
- Ardolino, L.; Franchi, A.; Fauqué, M. Geología y Recursos Minerales del Departamento Añelo, Provincia del Neuquén, Repuública Argentina: Escala 1:200.000; Subsecretaría de Minería de la Nación Dirección Nacional del Servicio Geológico: Buenos Aires, Argentina, 1996. [Google Scholar]
- Dingus, J.; Garrido, L.; Scott, A.; Chiappe, G.; Clarkle, L.; Schmitt, J. The litho-, bio-, and magneto stratigrphy of titanosaurian nesting sites in the Anacleto Formation at Auca Mahuevo (Campanian, Neuquén province, Argentina). In Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne; Museum of Northern Arizona Bulletin; Albright, L.B., III, Eds.; Museum of Northern Arizona: Flagstaff, AZ, USA, 2009; pp. 237–258. [Google Scholar]
- Garrido, A.C. Paleoenvironment of the auca mahuevo and los barreales sauropod nesting-sites (Late Cretaceous, Neuquén Province, Argentina). Ameghiniana 2010, 47, 99–106. [Google Scholar] [CrossRef]
- Pángaro, F.; Martínez, F.; Sattler, R.; Bettini, F. El Bajo de Añelo. In Geología y Recursos Naturales de la Provincia del Neuquén; Leanza, J.M., Arregui, H.A., Carbone, C., Danieli, O., Vallés, J.C., Eds.; Asociacion Geológica Argentina: Buenos Aires, Argentina, 2011; pp. 399–405. [Google Scholar]
- Miall, A.D. The Geology of Fluvial Deposits; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Miall, A.D. Analysis of Fluvial Depositional Systems; Education Course Note Series No 20; American Association of Petroleum Geologist: Tulsa, OK, USA, 1985. [Google Scholar]
- Schultz, L.G. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. Geol. Surv. Prof. Pap. 1964, 391, 1–31. [Google Scholar]
- Van der Marei, H.W. Quantitative analysis of clay minerals and their admixtures, Contrib. to Mineral. Petroleum 1966, 12, 96–138. [Google Scholar]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Moore, J.; Reynolds, D.M. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: London, UK, 1997. [Google Scholar]
- Grabowska-Olszewska, B.; Osipov, V.I.; Sokolov, V.N. Atlas of the Microstructure of Clay Soils, PWN, Warszawa; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1984. [Google Scholar]
- Harms, J.C.; Fahnestock, R.K. Stratification, Bed Forms, and Flow Phenomena (With an Example from the Rio Grande); Primary Sedimentary Structures and Their Hydrodynamic Interpretation; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1965; pp. 84–115. [Google Scholar]
- Allen, J.R.L. Sedimentary Structures: Their Character and Physical Basis; Elsevier: Amsterdam, The Netherlands, 1982; Volume 1. [Google Scholar]
- Farmer, V.; Russell, J.D. The infra-red spectra of layer silicates. Spectrochim. Acta 1964, 20, 1149–1173. [Google Scholar] [CrossRef]
- Madejová, J.; Komadel, P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.; Petit, S. IR Spectra of Clay Minerals, in Developments in Clay Science; Gates, F., Kloprogge, W.P., Madejová, J.T., Bergaya, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–149. [Google Scholar]
- Byrappa, K.; Kumar, B.V.S. Characterization of zeolites by infrared spectroscopy. Chem. Asian J. 2007, 19, 4933–4935. [Google Scholar]
- Abdul-moneim, M.; Abdelmoneim, A.A.; Geies, A.A.; Farghaly, S.O. Synthesis, Characterization of Analcime and Its Application in Water Treatment From Heavy Metal Assiut Univ. Bull. Environ. Res. 2018, 211, 1–22. [Google Scholar]
- Theodosoglou, K.; Koroneos, E.; Soldatos, A.; Zorba, T.; Paraskevopoulos, T. Comparative Fourier Transform Infrared and X-Ray Powder Difraction Analysis of Naturally Ocurred K- Feldspars. Bull. Geol. Soc. Greece 2010, 43, 2752–2761. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.; Swaffield, E. Thermal analysis. In A Handbook of Determinative Methods in Clay Mineralogy; Wilson, M.J., Ed.; Chapman and Hall: London, UK, 1987; pp. 99–132. [Google Scholar]
- Velde, B. The clay perspective. In Introduction to Clay Minerals; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Sakizci, M. Investigation of Thermal and Structural Properties of Natural and Ion-Exchanged Analcime. No. AFG5 Special Issue. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 724. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Tunbridge, I.P. Sandy high-energy flood sedimentation—Some criteria for recognition, with an example from the devonian of S.W. England. Sediment. Geol. 1981, 28, 79–95. [Google Scholar] [CrossRef]
- López Gómez, J.; Arche, A. Architecture of the Cañizar Fluvial Sheet Sandstone Early Triassic, Iberian Ranges, Eastern Spain. Alluv. Sediment. 1993, 17, 363–381. [Google Scholar]
- Allen, J.R.L. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 1965, 5, 89–191. [Google Scholar] [CrossRef]
- Coleman, J.M. Brahmaputra river: Channel processes and sedimentation, Sediment. Geological 1969, 3, 129–239. [Google Scholar] [CrossRef]
- Ulbig, A. Investigations on the origin of the bentonite deposits in the Bavarian Upper Freshwater Molasse. Neues Jahrb. Geol. Palaontol. Abh. 1999, 214, 497–508. [Google Scholar] [CrossRef]
- Holmberg, E. Descripción Geológica de la Hoja 33d Auca Mahuida, Provincia del Neuquén; Dirección Nacional de Geología y Minería, Subsecretaría de Minería: Buenos Aires, Argentina, 1964. [Google Scholar]
- Armas, P.; Moreno, C.; Sánchez, M.L.; González, F. Sedimentary palaeoenvironment, petrography, provenance and diagenetic inference of the Anacleto Formation in the Neuquén Basin, Late Cretaceous, Argentina. J. South Am. Earth Sci. 2014, 53, 59–76. [Google Scholar] [CrossRef]
- Hover, V.C.; Ashley, G.M. Geochemical signatures of paleodepositional and diagenetic environments: A STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzani. Clays Clay Miner. 2003, 51, 231–251. [Google Scholar] [CrossRef]
- Grim, N.; Guven, R.E. Bentonites. Geology, Mineralogy, Properties and Uses. Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Huff, W.D. K-bentonites: A review. Am. Mineral. 2016, 101, 43–70. [Google Scholar] [CrossRef]
- Christidis, G.E. Formation and growth of smectites in bentonites: A case study from Kimolos Island, Aegean, Greece. Clays Clay Miner. 2001, 49, 204–215. [Google Scholar] [CrossRef]
- Galán, R.E.; Ferrel, E. Genesis of clay minerals. In Handbook of Clay Science; Bergaya, L.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 83–126. [Google Scholar]
- Kadir, S.; Ülah, T.; Önalgil, N.; Erkoyun, H.; Elliott, W.C. Mineralogy, geochemistry, and genesis of bentonites in miocene volcanic-sedimentary units of the ankara-Çankiri basin, central anatolia, Turkey. Clays Clay Miner. 2017, 65, 64–91. [Google Scholar] [CrossRef]
- Christidis, G.E.; Huff, W.D. Geological Aspects and Genesis of Bentonites. Elements 2009, 5, 93–98. [Google Scholar] [CrossRef]
- Güven, N. Smectites, in Hydrous Phyllosilicates: Reviews in Mineralogy; Bailey, S.W., Ed.; Mineralogical Society of America: Washington, DC, USA, 1988; pp. 497–559. [Google Scholar]
- Turkmenoglu, A.G.; Aker, S. Origin of sedimentary bentonite deposits of Cankiri Basin, Turkey. Sci. Geol.-Mem. 1990, 88, 63–72. [Google Scholar]
- Sheppard, B.R.A.; Gude, A.J. Zeolites and Associated Authigenic Silicate Minerals in Tuffaceous Rocks of the Big Sandy Formation, Mohave County, Arizona. USGS Professional Paper 830. 1973. Available online: https://pubs.usgs.gov/pp/0830/report.pdf (accessed on 10 April 2022).
- Iijima, A. Plenary Paper—Geology and Mineralogy: Geology of natural zeolites and zeolitic rocks. Pure Appl. Chem. 1980, 52, 2115–2130. [Google Scholar] [CrossRef]
- Hay, R.L.; Guldman, S.G. Diagenetic Alteration of Silicic Ash in Searles Lake, California. Clays Clay Miner. 1987, 35, 449–457. [Google Scholar] [CrossRef]
- Uliana, M.A. Geología de la Region Comprendida Entre los Ríos Colorado y Negro. Provincias de Neuquén y Río Negro; Universidad Nacional de La Plata: La Plata, Argentina, 1979. [Google Scholar]
- Ramos, V.A. Descripción Geológica de la Hoja 33c Los Chihuidos Norte, Provincia del Neuquén; Servicio Geológico Minero Argentino: Buenos Aires, Argentina, 1981. [Google Scholar]
- Hay, R. Zeolites and zeolitic reactions in sedimentary rocks. Geol. Soc. Am. Spec. Pap. 1966, 85, 130. [Google Scholar]
- Remy, R.R.; Ferrell, R.E. Distribution and origin of analcime in marginal lacustrine mudstones of the Green River Formation, south-central Uinta basin, Utah. Clays Clay Miner. 1989, 37, 419–432. [Google Scholar] [CrossRef]
- Campo, M.D.; del Papa, C.; Jiménez-Millán, J.; Nieto, F. Clay mineral assemblages and analcime formation in a Palaeogene fluvial-lacustrine sequence (Maíz Gordo Formation Palaeogen) from northwestern Argentina, Sediment. Geological 2007, 201, 56–74. [Google Scholar]
- Karakaya, N.; Karakaya, M.Ç.; Temel, A. Mineralogical and chemical properties and the origin of two types of analcime in SW Ankara, Turkey. Clays Clay Miner. 2013, 61, 231–257. [Google Scholar] [CrossRef]
- English, P.M. Formation of analcime and moganite at Lake Lewis, Central Australia: Significance of groundwater evolution in diagenesis, Sediment. Geological 2001, 143, 219–244. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Nucleation and growth kinetics of analcime from precursor Na-clinoptilolite. Am. Mineral. 2000, 85, 1329–1341. [Google Scholar] [CrossRef]
- Gall, Q.; Hyde, R. Analcime in lake and lake-margin sediments of the Carboniferous Rocky Brook Formation, Western Newfoundland, Canada. Sedimentology 1989, 36, 875–887. [Google Scholar] [CrossRef]
- Renaut, R.W. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. Sedimentology 1993, 40, 271–301. [Google Scholar] [CrossRef]
- Hanor, J.S. Barite-Celestine Geochemistry and Environments of Formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- West, I.M. Vanished evaporites—Significance of strontium minerals. J. Sediment. Petrol. 1973, 43, 278–279. [Google Scholar]
- Hanor, J.S. A Model for the Origin of Large Carbonate- and Evaporite-Hosted Celestine (SrSO4) Deposits. J. Sediment. Res. 2004, 74, 168–175. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Rodríguez-Aranda, J.P.; del Cura, M.A.G. Bioinduced precipitation of barite and celestite in dolomite microbialites Examples from Miocene lacustrine sequences in the Madrid and Duero Basins, Spain. Sediment. Geol. 2009, 222, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Mees, F.; Tursina, T.V. Salt minerals in saline soils and salt crusts. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, F., Marcelino, G., Mees, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–321. [Google Scholar]
- Warren, J.K. Evaporites: A Compendium; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rollinson, H.; Pease, V. Using Geochemical Data to Understand Geological Processes, 2nd ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Mosser, C.; Brillanceau, A.; Besnus, Y. Relationship between sediments and their igneous source rocks using clay mineral multi-element chemistry: The Cenozoic lacustrine Anloua basin (Adamaoua, Cameroon). Chem. Geol. 1991, 90, 319–342. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 3rd ed.; Mineralogical Society of Great Britain and Ireland: London, UK, 2013. [Google Scholar]
- Cullers, R.; Barrett, T.; Carlson, R.; Robinson, B. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, USA. Chem. Geol. 1987, 63, 275–297. [Google Scholar] [CrossRef]
- Lamaskin, T.A.; Dorsey, R.J.; Vervoort, J.D. Tectonic controls on mudrock geochemistry, mesozoic rocks of eastern Oregon and western Idaho, U.S.A.: Implications for Cordilleran tectonics. J. Sediment. Res. 2008, 78, 765–783. [Google Scholar] [CrossRef]
- Cullers, R. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado. Geochim. Cosmochim. Acta 1994, 58, 4955–4972. [Google Scholar] [CrossRef]
- Winchester, P.A.; Floyd, J.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Cullers, R. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos 2000, 53, 181–203. [Google Scholar] [CrossRef]
- Cullers, R.L.; Podkovyrov, V.N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res. 2000, 104, 77–93. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R.; McCulloch, M.T.; Maynard, J.B. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 1990, 54, 2015–2050. [Google Scholar] [CrossRef]
- Hayashi, H.; Fujisawa, K.; Holland, H.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Bokanda, E.E.; Fralick, P.; Emile, E.; Betrant, B.S.; Ntoboh, T.C.; Nkongho, A.E.; Cedric, B.B. Geochemical constraints on the provenance, paleoweathering and maturity of the Mamfe black shales, West Africa. J. Afr. Earth Sci. 2021, 175, 104078. [Google Scholar] [CrossRef]
- Christidis, G.; Dunham, A.C. Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece. Clay Miner. 1997, 32, 253–270. [Google Scholar] [CrossRef]
- Christidis, G.E. Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Miner. 2008, 43, 515–529. [Google Scholar] [CrossRef]
- Gilg, K.; Kaufhold, H.A.; Ufer, S. Smectite and bentonite terminology, classifcation, and genesis. In Bentonites. Characterization, Geology, Mineralogy, Analysis, Mining, Processing and Uses; Khaufold, S., Ed.; Schweizbart Science Publishers: Stuttgart, Germany, 2020; pp. 1–18. [Google Scholar]
Code | Descriptions | Interpretations |
---|---|---|
Sh | Fine- to medium-grained sandstones, moderate reddish brown (10R 4/6), with horizontal stratification. Tabular bodies up to 45 cm thick and several meters of lateral extension. Net and planar base. Skolithos isp. trace fossils can be present. | Plane-bed deposits Upper flow regime |
St | Fine- to medium-grained micaceous sandstones, moderate reddish-brown (10R 4/6) to moderate reddish-orange (10R 6/6), with medium scale trough cross stratification. Bodies of tabular and lenticular geometry up to 1 m thick, with net planar base. | 3D bedforms (sandy dunes) Lower flow regime |
Sr | Very fine- to medium-grained size micaceous sandstones, moderate reddish-brown (10R 4/6) to moderate reddish-orange (10R 6/6), with ripple cross-lamination. Bodies of tabular and lenticular geometry up to 34 cm thick, with net planar base. Scoyenia isp. trace fossils can be present. | 3D ripples (linguoid dunes) Lower flow regime |
Sp(t) | Medium- to coarse-grained sandstones, moderate reddish-brown (10R 4/6) to pale reddish-brown (10R 5/4), with tangential cross bedding. Tabular deposits up to 45 cm thick, with lateral wedge like geometry and several meters of extension. Net and planar base. | 3D bedforms Lower flow regime |
Htl | Very fine-grained sandstones and mud, moderate reddish-brown (10R 4/6), with parallel lamination, in some cases associated to convolute lamination. Tabular bodies up to 49 cm thick, with laterally wedge like geometry and net planar base. | Tractive and decantation deposits associated to low regime unconfined flows. Saturated sediments deformed by load and density contrast. |
Fl | Moderate brown (5YR 4/4) mudstones with plane-parallel lamination. Sheet-like deposits up to 45 cm thick, with net and planar base. | Deposition by decantation |
Fm | Moderate brown (5YR 4/4) massive mudstones. Sheet-like deposits up to 2.5 m thick, with net and planar base. | Deposition by decantation |
B | Light brownish-gray (5YR 6/1) to grayish red (10R 4/2) massive to laminated bentonite. Tabular bodies up to 55 cm thick, transitional base from lithofacies Fm-Fl. Remains of fossil leaves can be observed in red laminated bentonites. | Deposition by decantation, associated to shallow lakes |
Lithology | Samples | Phyllosilicates | Quartz | Feldspars 1 | Gypsum | Analcime |
---|---|---|---|---|---|---|
Bentonite | B-2 | 90 | 4 | 4 | 2 | 0 |
Bentonite | B-3 | 96 | 2 | 1 | 1 | 0 |
Bentonite | B-5 | 88 | 4 | 7.5 | 0.5 | 0 |
Bentonite | B-11 | 93 | 3 | 2 | 2 | 0 |
Bentonite | SO-1 | 93 | 1.5 | 4 | 0.5 | 1 |
Bentonite | SO-2 | 86.7 * | 4 | 7.5 | 0.5 | 0.75 |
Bentonite | SO-3 | 98 | 2 | 0 | 0 | Id |
Bentonite | SO-4 | 96 * | 1.5 | 1.5 | 0 | 1 |
Bentonite | SO-5 | 96.5 | 1 | 1.5 | 0.5 | 0.5 |
Bentonite | SO-6 | 86.5 * | 4.5 | 6.75 | 0.25 | 2 |
Bentonite | SO-7 | 86.5 * | 4 | 9 | Tr | 0.5 |
Bentonite | SO-8 | 91.5 * | 2.5 | 6 | 0 | Tr |
Bentonite | SO-9 | 95.5 * | 2 | 2 | 0 | 0.5 |
Bentonite | SO-10 | 89 * | 3 | 6.5 | 0 | 1.5 |
Bentonite | SO-11 | 74 * | 7 | 19 | 0 | Tr |
Bentonite | SO-12 | 86.5 * | 4 | 9.25 | 0 | 0.25 |
JUST section | ||||||
Silty claystone | JUST-4 | 81 * | 5 | 6 | 0 | 7 |
Bentonite | JUST-3 | 99 * | 1 | 0 | 0 | 0 |
Sandy siltstone | JUST-1 | 43.5 * | 23 | 28 | 0.5 | 5 |
Sample | Lithology | Smectite | Illite | Kaol + Chlo | FWHM | Cr (nm) |
---|---|---|---|---|---|---|
SO-6 | Bentonite | 100 | 0 | 0 | 0.60 | 14.38 |
SO-7 | Bentonite | 100 | 0 | 0 | 0.59 | 14.63 |
SO-10 | Bentonite | 100 | 0 | 0 | 0.61 | 14.15 |
SO-12 | Bentonite | 100 | Tr | 0 | 0.60 | 14.38 |
JUST-4 | Silty claystone | 100 | Tr | 0 | 0.90 | 9.59 |
JUST-1 | Sandy siltstone | 98 | 2 | Tr | 1.06 | 8.14 |
Sample | Lithology | Mixed layers (I/Sm) | Illite | Kaol + Chlo | ||
2A1 | Sandstone | 32 (Sm50) | 48 | 20 | ||
2A2 | Mudstone | 48 (Sm70) | 48 | 3 | ||
P2M7 | Sandstone | 45 (Sm50) | 49 | 6 | ||
P2M6a | Sandstone | 87 (Sm50) | 13 | Tr | ||
P2M6 | Sandstone | 72 (Sm50) | 26 | 2 | ||
P2M4 | Sandstone | 23 (Sm50) | 73 | 4 | ||
P2M1 | Sandstone | 85 (Sm50) | 15 | 0 |
Sample | Mineralogical Association * |
---|---|
B-12 (bentonite) | Mnt, Phl-Bt, Clt, Fe-Ti oxide, Hl, Ap |
SO-4 (bentonite) | Mnt, Phl-Bt, Brt, Ap, Gp, Anl |
JUST-2 (bentonite) | Mnt, Phlo-Bt |
JUST-3 (bentonite) | Mnt, Phlo-Bt, Gp |
JUST-4 (silty claystone) | Mnt, Phlo-Bt, Clt, Ap, Mnz, Zrn, Fe-Ti oxide, Qz, Ab |
Mineral | Sizes |
Mica (Phlo-Bt) | 50–180 µm |
Zircon (Zrn) | 12–40 µm |
Monazite (Mnz) | 16 µm |
Analcime (Anl) | 6–10 µm |
Hematite (Hem) | 8–10 µm |
Fe-Ti oxide | 3–40 µm |
Celestine (Clt) | 8–25 µm |
Barite (Brt) | 5–12 µm |
Gypsum (Gp) | 6–65 µm |
Apatite (Ap) | 1–10 µm |
Analysis | Sample | Na | Mg | Al | Si | Ca | Fe | S | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | B-12 | 6.22 | 8.69 | 22.3 | 61.55 | 1.24 | Smectite | ||||||||
2 | B-12 | 6.47 | 9.22 | 22.7 | 60.62 | 0.99 | Smectite | ||||||||
3 | B-12 | 6.2 | 9.61 | 21.84 | 60.33 | 1.15 | 0.87 | Smectite | |||||||
4 | B-12 | 6.4 | 8.43 | 20.29 | 55.38 | 4.19 | 0.99 | 4.33 | Smectite | ||||||
5 | JUST-3 | 5.78 | 8.6 | 22.83 | 61.51 | 1.29 | Smectite | ||||||||
6 | JUST-3 | 6.01 | 8.94 | 22.39 | 61.81 | 0.84 | Smectite | ||||||||
Analysis | Sample | Na | Mg | Al | Si | Ca | Fe | K | Ti | Mn | P | ||||
7 | SO-4 | 1.26 | 12.11 | 22.35 | 39.85 | 1.01 | 14.11 | 6.7 | 2.16 | 0.45 | Mica | ||||
8 | SO-4 | 1.48 | 12.71 | 20.0 | 36.59 | 0.74 | 18.57 | 7.86 | 2.47 | Mica | |||||
9 | SO-4 | 0.60 | 11.86 | 20.56 | 30.52 | 22.92 | 10.43 | 3.11 | Mica | ||||||
10 | B-12 | 13.55 | 19.28 | 32.73 | 19.83 | 11.33 | 3.28 | Mica | |||||||
11 | JUST-3 | 2.24 | 17.7 | 21.16 | 37.89 | 12.32 | 6.46 | 2.25 | Mica | ||||||
12 | JUST-3 | 1.77 | 17.87 | 20.28 | 36.22 | 13.45 | 7.81 | 2.6 | Mica | ||||||
13 | JUST-3 | 1.37 | 18.45 | 20.19 | 36.59 | 12.55 | 7.92 | 2.93 | Mica | ||||||
14 | JUST-4 | 1.38 | 13.41 | 22.33 | 40.06 | 0.61 | 12.05 | 7.93 | 1.69 | 0.53 | Mica | ||||
15 | JUST-4 | 1.69 | 1.76 | 36.47 | 45.11 | 2.06 | 12.09 | 0.81 | Mica | ||||||
Analysis | Sample | Na | Mg | Al | Si | Ca | Fe | K | Ti | S | P | Ba | Sr | Mn | |
16 | SO-4 | 14.82 | 2.54 | 23.16 | 58.58 | 0.85 | Analcime | ||||||||
17 | B-12 | 2.9 | 9.32 | 5.48 | 7.81 | 65.07 | 8.8 | 0.63 | Fe-Ti oxide | ||||||
18 | B-12 | 2.97 | 2.31 | 5.81 | 3.16 | 82.09 | 3.66 | Hematite | |||||||
19 | B-12 | 0.9 | 27.8 | 71.26 | Celestine | ||||||||||
20 | SO-4 | 4.79 | 4.07 | 8.67 | 13.01 | 35.89 | 30.25 | 3.32 | Barite |
% | B-1 * | B-3 | B-8 * | B-11 | B-12 * | PEL | C3 ** |
---|---|---|---|---|---|---|---|
SiO2 | 55.77 | 54.69 | 55.18 | 54.28 | 55.54 | 58.13 | 55.5 |
Al2O3 | 16.52 | 15.99 | 16.54 | 15.78 | 16.31 | 18.48 | 18.45 |
Fe2O3(T) | 1.42 | 1.50 | 1.21 | 2.08 | 1.67 | 3.94 | 5.38 |
MnO | 0.058 | 0.058 | 0.045 | 0.065 | 0.074 | 0.015 | 0.03 |
MgO | 5.84 | 5.66 | 5.76 | 5.24 | 5.80 | 2.90 | 1.61 |
CaO | 0.49 | 0.98 | 0.28 | 1.14 | 0.31 | 0.20 | 0.76 |
Na2O | 3.20 | 3.56 | 3.36 | 4.03 | 3.49 | 2.61 | 2.46 |
K2O | 0.28 | 0.36 | 0.23 | 0.58 | 0.26 | 0.18 | 0.24 |
TiO2 | 0.14 | 0.15 | 0.127 | 0.196 | 0.135 | 0.145 | 0.28 |
P2O5 | 0.10 | 0.09 | 0.06 | 0.08 | 0.08 | 0.02 | 0.04 |
LOI | 16.38 | 16.56 | 16.78 | 15.05 | 16.33 | 13.92 | N.a |
ppm | B-1 | B-3 | B-8 | B-11 | B-12 | PEL | C3 ** |
La | 9.1 | 9.9 | 6.1 | 9.9 | 8.2 | 13.1 | 45.6 |
Ce | 18.1 | 18.6 | 14.2 | 21.1 | 17.9 | 27.1 | 98 |
Pr | 3.1 | 3.1 | 1.8 | 2.5 | 2.5 | 3.4 | 11.2 |
Nd | 10.3 | 9.5 | 6.2 | 10 | 7.5 | 10.4 | 41.3 |
Sm | 1.9 | 1.2 | 1.6 | 2.1 | 1.8 | 1.8 | 8.21 |
Eu | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.5 | 0.88 |
Gd | 2.3 | 2.3 | 2.7 | 1.8 | 1.9 | 1.9 | 7.7 |
Tb | 0.3 | 0.4 | 0.3 | 0.5 | 0.4 | 0.3 | 1.33 |
Dy | 2.5 | 2.4 | 1.5 | 2.7 | 2.2 | 1.8 | 7.56 |
Ho | 0.5 | 0.5 | 0.4 | 0.6 | 0.5 | 0.4 | 1.45 |
Er | 1.9 | 1.1 | 1.1 | 1 | 1.3 | 0.6 | 4.64 |
Tm | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.72 |
Yb | 1.7 | 1 | 1.7 | 1.1 | 1.4 | 1.3 | 5.05 |
Y | 15.7 | 16 | 12 | 12.6 | 12.4 | 7 | 39.5 |
ppm | B-1 | B-3 | B-8 | B-11 | B-12 | PEL | C3 ** |
Co | 15.8 | 12.3 | 12.4 | 15.5 | 16 | 1.5 | |
Zn | 50 | 40 | 40 | 40 | 40 | 90 | |
Cu | 18 | 23 | 15 | 19 | 28 | 4 | |
Ni | 20 | 40 | 20 | 30 | 40 | 10 | |
V | 166 | 121 | 104 | 74 | 125 | 5 | 5 |
Cr | 60 | 90 | 70 | 80 | 80 | 40 | 20 |
Zr | 53 | 59 | 49 | 61 | 48 | 83 | 223 |
Nb | 17.5 | 16.6 | 17.6 | 15.2 | 17.6 | 12.9 | 20.5 |
Ta | 2.1 | 1.7 | 1.8 | 1.7 | 2.2 | 2 | 1.7 |
Th | 3.5 | 3.5 | 3.3 | 3.9 | 3.4 | 6.6 | 23.1 |
U | 2 | 2.4 | 2.5 | 4.4 | 3.4 | 1.8 | 6.67 |
Ba | 51 | 48 | 29 | 62 | 44 | 666 | 138 |
Sr | 77 | 133 | 72 | 176 | 65 | 74 | 79.2 |
Rb | 12.5 | 15.8 | 8.3 | 22.6 | 8.9 | 10.4 | 8.5 |
Cs | 1.3 | 0.8 | 0.4 | 2.2 | 0.4 | 0.7 | 2.82 |
Li | 133 | 127 | 137 | 121 | 132 | 27 | |
S | 0.09 | 0.68 | 0.16 | 0.71 | 0.13 | 0.13 | |
B | 10 | 10 | <10 | 30 | <10 | 110 | |
Sc | 4 | 4 | 4 | 5 | 4 | 4 | |
Be | 2 | 2 | 2 | 2 | 2 | <3 | |
Ga | 22.1 | 17.2 | 19.5 | 19 | 22.3 | 20.4 | 23.3 |
Ge | 1.1 | 1.6 | 1.7 | 1.4 | 1.6 | <0.7 | |
Mo | 2 | 4 | 2 | 4 | 4 | <1 | |
Pb | 14.2 | 13.5 | 12.5 | 11.9 | 17.2 | 12.3 | |
Sn | 3.3 | 2.9 | 4 | 2.8 | 2.5 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musso, T.B.; Pettinari, G.; Pozo, M.; Martínez, A.G.; González, R. Distribution, Sedimentology and Origin of Mineralogical Assemblages from a Continental Na-bentonite Deposit in the Cretaceous Neuquén Basin (Argentina). Minerals 2022, 12, 467. https://doi.org/10.3390/min12040467
Musso TB, Pettinari G, Pozo M, Martínez AG, González R. Distribution, Sedimentology and Origin of Mineralogical Assemblages from a Continental Na-bentonite Deposit in the Cretaceous Neuquén Basin (Argentina). Minerals. 2022; 12(4):467. https://doi.org/10.3390/min12040467
Chicago/Turabian StyleMusso, Telma Belén, Gisela Pettinari, Manuel Pozo, Alexis Gabriel Martínez, and Rafael González. 2022. "Distribution, Sedimentology and Origin of Mineralogical Assemblages from a Continental Na-bentonite Deposit in the Cretaceous Neuquén Basin (Argentina)" Minerals 12, no. 4: 467. https://doi.org/10.3390/min12040467
APA StyleMusso, T. B., Pettinari, G., Pozo, M., Martínez, A. G., & González, R. (2022). Distribution, Sedimentology and Origin of Mineralogical Assemblages from a Continental Na-bentonite Deposit in the Cretaceous Neuquén Basin (Argentina). Minerals, 12(4), 467. https://doi.org/10.3390/min12040467