First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation
Abstract
:1. Introduction
2. Regional Geology
3. Analytical Methods
3.1. Petrography
3.2. Zircon Imaging
3.3. U-Pb Detrital Zircon Dating
4. Results
4.1. Petrography
4.2. Zircon Geochronology
4.2.1. Detrital Zircon U-Pb Dating Results
4.2.2. Internal Zoning Pattern and Th/U ratio
5. Discussion
5.1. Provenance Interpretation
5.1.1. U-Pb Ages of Source Terranes
5.1.2. Provenance of Kamlial Formation
5.2. Tectonic Implications for Himalayan Exhumation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, L.; Qasim, M.; Jadoon, I.A.K.; Khan, M.A.; Xu, Q.; Cai, F.; Wang, H.; Baral, U.; Yue, Y. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 2016, 455, 49–61. [Google Scholar] [CrossRef] [Green Version]
- DeCelles, P.G.; Giles, K.A. Foreland basin systems. Basin Res. 1996, 8, 105–123. [Google Scholar] [CrossRef]
- Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 2006, 74, 1–72. [Google Scholar] [CrossRef]
- Awais, M.; Qasim, M.; Tanoli, J.I.; Ding, L.; Sattar, M.; Baig, M.S.; Pervaiz, S. Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision. Minerals 2021, 11, 1399. [Google Scholar] [CrossRef]
- Qasim, M.; Ahmad, J.; Ding, L.; Tanoli, J.I.; Sattar, M.; Rehman, Q.U.; Awais, M.; Umar, M.; Baral, U.; Khan, H. Integrated provenance and tectonic implications of the Cretaceous–Palaeocene clastic sequence, Changla Gali, Lesser Himalaya, Pakistan. Geol. J. 2021, 56, 4747–4759. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Baral, U.; Jadoon, I.A.K.; Umar, M.; Imran, M. Provenance of the Hangu Formation, Lesser Himalaya, Pakistan: Insight from the detrital zircon U-Pb dating and spinel geochemistry. Palaeoworld 2020, 29, 729–743. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Jadoon, I.A.; Haneef, M.; Baral, U.; Cai, F.; Wang, H.; Yue, Y. Tectonic implications of detrital zircon ages from lesser Himalayan Mesozoic-Cenozoic strata, Pakistan. Geochem. Geophys. Geosystems 2018, 19, 1636–1659. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Li, Z.; Laskowski, A.K.; Li, J.; Baral, U.; Qasim, M.; Yue, Y. Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang collision. Tectonophysics 2020, 775, 228311. [Google Scholar] [CrossRef]
- Dew, R.E.C.; Collins, A.S.; Morley, C.K.; King, R.C.; Evans, N.J.; Glorie, S. Coupled detrital zircon U–Pb and Hf analysis of the Sibumasu Terrane: From Gondwana to northwest Thailand. J. Asian Earth Sci. 2021, 211, 104709. [Google Scholar] [CrossRef]
- Li, Q.; Lin, W.; Wang, Y.; Faure, M.; Meng, L.; Wang, H.; Van Nguyen, V.; Thu, H.L.T.; Lepvrier, C.; Chu, Y.; et al. Detrital zircon UPb age distributions and Hf isotopic constraints of the Ailaoshan-Song Ma Suture Zone and their paleogeographic implications for the Eastern Paleo-Tethys evolution. Earth-Sci. Rev. 2021, 221, 103789. [Google Scholar] [CrossRef]
- Zheng, B.; Mou, C.; Wang, X.; Chen, H. U-Pb ages, trace elements and Hf isotopes of detrital zircons from the late Permian-early Triassic sedimentary succession in the northern Yangtze Block, South China: Implications for the reconstruction of the South China Block in Pangea. J. Asian Earth Sci. 2021, 206, 104609. [Google Scholar] [CrossRef]
- Baral, U.; Lin, D.; Chamlagain, D. Detrital zircon U–Pb geochronology of the Siwalik Group of the Nepal Himalaya: Implications for provenance analysis. Int. J. Earth Sci. 2015, 105, 921–939. [Google Scholar] [CrossRef]
- Baral, U.; Lin, D.; Chamlagain, D.; Qasim, M.; Paudayal, K.N.; Neupane, B. Detrital zircon U–Pb ages, Hf isotopic constraints, and trace element analysis of Upper Cretaceous–Neogene sedimentary units in the Western Nepal Himalaya: Implications for provenance changes and India–Asia collision. Geol. J. 2019, 54, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Baral, U.; Lin, D.; Goswami, T.K.; Sarma, M.; Qasim, M.; Bezbaruah, D. Detrital zircon U–Pb geochronology of a Cenozoic foreland basin in Northeast India: Implications for zircon provenance during the collision of the Indian and Asian plates. Terra Nova 2019, 31, 18–27. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 2011, 305, 195–206. [Google Scholar] [CrossRef]
- DeCelles, P.; Gehrels, G.; Najman, Y.; Martin, A.; Carter, A.; Garzanti, E. Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 2004, 227, 313–330. [Google Scholar] [CrossRef]
- Ashraf, M.; Chaudhry, M.; Qureshi, K. Stratigraphy of Kotli area of Azad Kashmir and its correlation with standard type areas of Pakistan. Kashmir J. Geol. 1983, 1, 19–30. [Google Scholar]
- Baig, M.S.; Munir, M.-U.-H. Foraminiferal biostratigraphy of Yadgar area, Muzaffarabad Azad Kashmir, Pakistan. J. Himal. Earth Sci. 2007, 40, 33–43. [Google Scholar]
- Munir, M.-U.-H.; Baig, M.S. Paleogene biostratigraphy of Tattpani, Kotli Azad Kashmir, Northwest sub-Himalayas, Pakistan. J. Himal. Earth Sci. 2006, 39, 39–48. [Google Scholar]
- Wadia, D. The syntaxis of the northwest Himalaya: Its rocks, tectonics and orogeny. Rec. Geol. Surv. India 1931, 65, 189–220. [Google Scholar]
- Wadia, D.N. The Geology of Poonch State (Kashmir) and Adjacent Portions of the Punjab; Government of India Central Publication Branch: Calcutta, India, 1928.
- Baig, M.; Lawrence, R. Precambrian to early Paleozoic orogenesis in the Himalaya. Kashmir J. Geol. 1987, 5, 1–22. [Google Scholar]
- Abbasi, I.; Friend, P. Exotic conglomerates of the Neogene Siwalik succession and their implications for the tectonic and topographic evolution of the Western Himalaya. Geol. Soc. Lond. Spec. Publ. 2000, 170, 455–466. [Google Scholar] [CrossRef]
- Abbasi, I.A.; Friend, P.F. Uplift and evolution of the Himalayan orogenic belts, as recorded in the foredeep molasse sediments. Z. Für Geomorphol. NF Suppl. 1989, 76, 75–88. [Google Scholar]
- Kazmi, A.H.; Abbasi, I.A. Stratigraphy & Historical Geology of Pakistan; Department & National Centre of Excellence in Geology: Peshawar, Pakistan, 2008. [Google Scholar]
- Mughal, M.S.; Zhang, C.; Du, D.; Zhang, L.; Mustafa, S.; Hameed, F.; Khan, M.R.; Zaheer, M.; Blaise, D. Petrography and provenance of the Early Miocene Murree Formation, Himalayan Foreland Basin, Muzaffarabad, Pakistan. J. Asian Earth Sci. 2018, 162, 25–40. [Google Scholar] [CrossRef]
- Razzaq, S.S. Structural Geometry and Kinematic Analysis of Jhelum Fault, Hazara Kashmir Syntaxis, Northwest Himalayas, Pakistan. Master’s Thesis, University of Azad Jammu and Kashmir, Muzaffarabad, 2013. [Google Scholar]
- DeCelles, P.; Kapp, P.; Gehrels, G.; Ding, L. Paleocene—Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics 2014, 33, 824–849. [Google Scholar] [CrossRef]
- Jagoutz, O.; Schmidt, M. The formation and bulk composition of modern juvenile continental crust: The Kohistan arc. Chem. Geol. 2012, 298, 79–96. [Google Scholar] [CrossRef]
- Bouilhol, P.; Jagoutz, O.; Hanchar, J.M.; Dudas, F.O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 2013, 366, 163–175. [Google Scholar] [CrossRef]
- Searle, M.; Khan, M.A.; Fraser, J.; Gough, S.; Jan, M.Q. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 1999, 18, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Petterson, M.G. A review of the geology and tectonics of the Kohistan island arc, north Pakistan. Geol. Soc. Lond. Spec. Publ. 2010, 338, 287–327. [Google Scholar] [CrossRef]
- Jan, M.; Karim, A. Coronas and high-P veins in metagabbros of the Kohistan island arc, northern Pakistan: Evidence for crustal thickening during cooling. J. Metamorph. Geol. 1995, 13, 357–366. [Google Scholar] [CrossRef]
- Jan, M.Q.; Khan, M.A.; Qazi, M.S. The Sapat mafic-ultramafic complex, Kohistan arc, North Pakistan. Geol. Soc. Lond. Spec. Publ. 1993, 74, 113–121. [Google Scholar] [CrossRef]
- Khan, M.A.; Jan, M.Q.; Weaver, B. Evolution of the lower arc crust in Kohistan, N. Pakistan: Temporal arc magmatism through early, mature and intra-arc rift stages. Geol. Soc. Lond. Spec. Publ. 1993, 74, 123–138. [Google Scholar] [CrossRef]
- Treloar, P.J.; Petterson, M.G.; Jan, M.Q.; Sullivan, M. A re-evaluation of the stratigraphy and evolution of the Kohistan arc sequence, Pakistan Himalaya: Implications for magmatic and tectonic arc-building processes. J. Geol. Soc. 1996, 153, 681–693. [Google Scholar] [CrossRef]
- Tahirkheli, R.K.; Mattauer, M.; Proust, F.; Tapponnier, P. The India Eurasia suture zone in northern Pakistan: Synthesis and interpretation of recent data at plate scale. Geodyn. Pak. 1979, 125–130. [Google Scholar]
- Treloar, P.J.; Coward, M.P. Indian Plate motion and shape: Constraints on the geometry of the Himalayan orogen. Tectonophysics 1991, 191, 189–198. [Google Scholar] [CrossRef]
- DiPietro, J.A.; Pogue, K.R. Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics 2004, 23, 1–20. [Google Scholar] [CrossRef]
- Kaneko, Y.; Katayama, I.; Yamamoto, H.; Misawa, K.; Ishikawa, M.; Rehman, H.; Kausar, A.; Shiraishi, K. Timing of Himalayan ultrahigh—Pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J. Metamorph. Geol. 2003, 21, 589–599. [Google Scholar] [CrossRef]
- Bossart, P.; Ottiger, R. Rocks of the Murree Formation in northern Pakistan: Indicators of a descending foreland basin of late Paleocene to middle Eocene age. Eclogae Geol. Helv. 1989, 82, 133–165. [Google Scholar]
- Singh, B. Evolution of the Paleogene succession of the western Himalayan foreland basin. Geosci. Front. 2013, 4, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Gansser, A. Geology of the Himalayas; Interscience Publisher, John Wiley: New York, NY, USA, 1964. [Google Scholar]
- Bossart, P.; Dietrich, D.; Greco, A.; Ottiger, R.; Ramsay, J.G. The tectonic structure of the Hazara-Kashmir Syntaxis, southern Himalayas, Pakistan. Tectonics 1988, 7, 273–297. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Fullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Springer: Berlin/Heidelberg, Germany, 1985; pp. 333–361. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Fornelli, A.; Festa, V.; Micheletti, F.; Spiess, R.; Tursi, F. Building an Orogen: Review of U-Pb Zircon Ages from the Calabria–Peloritani Terrane to Constrain the Timing of the Southern Variscan Belt. Minerals 2020, 10, 944. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Spencer, C.J.; Kirkland, C.L.; Taylor, R.J. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 2016, 7, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, K. Isoplot/Ex 3. In A Geochronological Toolkit Microsoft Excel. Berkeley Geochronology Center; Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Fernández-Suárez, J.; Gutiérrez-Alonso, G.; Jenner, G.; Tubrett, M. New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: Insights from U–Pb detrital zircon ages. Precambrian Res. 2000, 102, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N. Detrital zircon geochronology of pre—Tertiary strata in the Tibetan—Himalayan orogen. Tectonics 2011, 30, 1–27. [Google Scholar] [CrossRef]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. U–Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators. Geol. Mag. 2021, 158, 859–874. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The metamorphic mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S. Detrital zircon U–Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment. J. Palaeogeogr. 2020, 9, 1–27. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Umar, M.; Jadoon, I.A.; Haneef, M.; Baral, U.; Cai, F.; Shah, A.; Yao, W. Late neoproterozoic–early Palaeozoic stratigraphic succession, western himalaya, north Pakistan: Detrital zircon provenance and tectonic implications. Geol. J. 2018, 53, 2258–2279. [Google Scholar] [CrossRef]
- Naeem, M.; Burg, J.-P.; Ahmad, N.; Chaudhry, M.N.; Khalid, P. U-Pb zircon systematics of the Mansehra Granitic Complex: Implications on the early Paleozoic orogenesis in NW Himalaya of Pakistan. Geosci. J. 2016, 20, 427–447. [Google Scholar] [CrossRef]
- Sajid, M.; Andersen, J.; Rocholl, A.; Wiedenbeck, M. U-Pb geochronology and petrogenesis of peraluminous granitoids from northern Indian plate in NW Pakistan: Andean type orogenic signatures from the early Paleozoic along the northern Gondwana. Lithos 2018, 318, 340–356. [Google Scholar] [CrossRef]
- Rehman, H.U.; Yamamoto, H.; KHALIL, M.A.K.; Nakamura, E.; Zafar, M.; Khan, T. Metamorphic history and tectonic evolution of the Himalayan UHP eclogites in Kaghan valley, Pakistan. J. Mineral. Petrol. Sci. 2008, 103, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.U.; Yamamoto, H.; Shin, K. Metamorphic P–T evolution of high-pressure eclogites from garnet growth and reaction textures: Insights from the Kaghan Valley transect, northern Pakistan. Isl. Arc 2013, 22, 4–24. [Google Scholar] [CrossRef]
- Myrow, P.; Hughes, N.; Paulsen, T.; Williams, I.; Parcha, S.; Thompson, K.; Bowring, S.; Peng, S.-C.; Ahluwalia, A. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett. 2003, 212, 433–441. [Google Scholar] [CrossRef]
- Cawood, P.A.; Johnson, M.R.; Nemchin, A.A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 2007, 255, 70–84. [Google Scholar] [CrossRef]
- Aikman, A.B.; Harrison, T.M.; Lin, D. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet. Sci. Lett. 2008, 274, 14–23. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Goodge, J.W.; Fanning, C.M.; Williams, I.S.; Peng, S.; Bhargava, O.N.; Parcha, S.K.; Pogue, K.R. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geol. Soc. Am. Bull. 2010, 122, 1660–1670. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Maksatbek, S.; Cai, F.; Wang, H.; Song, P.; Ji, W.; Xu, Q.; Zhang, L.; Muhammad, Q.; Upendra, B. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 2017, 60, 635–651. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Tanoli, J.I.; Ahmad, L.; Ding, L.; Rehman, Q.U.; Umber, U. First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation. Minerals 2022, 12, 298. https://doi.org/10.3390/min12030298
Qasim M, Tanoli JI, Ahmad L, Ding L, Rehman QU, Umber U. First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation. Minerals. 2022; 12(3):298. https://doi.org/10.3390/min12030298
Chicago/Turabian StyleQasim, Muhammad, Javed Iqbal Tanoli, Luqman Ahmad, Lin Ding, Qasim Ur Rehman, and Umbreen Umber. 2022. "First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation" Minerals 12, no. 3: 298. https://doi.org/10.3390/min12030298
APA StyleQasim, M., Tanoli, J. I., Ahmad, L., Ding, L., Rehman, Q. U., & Umber, U. (2022). First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation. Minerals, 12(3), 298. https://doi.org/10.3390/min12030298