Provenance Analysis of Clastics Applied to Sedimentary Geology and Petrology

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: closed (11 February 2022) | Viewed by 26907

Special Issue Editors


E-Mail Website
Guest Editor
Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Interests: sedimentary geology; provenance

E-Mail Website
Guest Editor
Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
Interests: provenance; sedimentary geology; geochronology

Special Issue Information

Dear Colleagues,

Provenance studies have benefited from new emergent techniques, which have promoted significant advances in recent years in the understanding of signal propagation in sediment routing systems. Classic methods, such as sedimentary petrography, heavy mineral analysis, or geochemistry analyses, have been successfully complemented with new tools, mainly concerning geo- and thermochronology dating of a wide range of minerals. Coupled with well-established methods, these recent advances are crucial to disentangle the processes involved in a source to sink system: from chemical and physical weathering of the source rock lithologies in catchment areas, to diagenetic modifications in the ultimate sink, which are in turn potentially affected by climate and tectonics within a dynamic environment. This Special Issue invites works focusing on recent advances in provenance studies, including new techniques, multidisciplinary approaches, and, of particular interest, the analysis of signal propagation within source to sink systems. Case studies with a particular interest are also welcome.

Prof. Dr. David Gómez-Gras
Dr. Marta Roigé
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • petrography
  • geochemistry
  • detrital geochronology
  • provenance
  • source-to-sink
  • basin analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 8149 KiB  
Article
First U-Pb Detrital Zircon Ages from Kamlial Formation (Kashmir, Pakistan): Tectonic Implications for Himalayan Exhumation
by Muhammad Qasim, Javed Iqbal Tanoli, Luqman Ahmad, Lin Ding, Qasim Ur Rehman and Umbreen Umber
Minerals 2022, 12(3), 298; https://doi.org/10.3390/min12030298 - 26 Feb 2022
Cited by 4 | Viewed by 3293
Abstract
This study reports the first-ever detrital zircon provenance investigation of sandstones of the Kamlial Formation, exposed in Kashmir Basin along the Kohala–Bagh road section (Muzaffarabad, Pakistan). Analysis of probability density plots of detrital U-Pb zircon ages displayed a major age population clustered around [...] Read more.
This study reports the first-ever detrital zircon provenance investigation of sandstones of the Kamlial Formation, exposed in Kashmir Basin along the Kohala–Bagh road section (Muzaffarabad, Pakistan). Analysis of probability density plots of detrital U-Pb zircon ages displayed a major age population clustered around ≈400–1200 Ma and a minor age population clustered around ≈1600–1900 Ma. In addition, scattered ages existed between ≈2000 and 3000 Ma. This age pattern resembled strongly the Himalayan sources, including the Tethys Himalaya, Greater/Higher Himalaya, and Lesser Himalaya. The younger ages (<150 Ma) present in the studied samples indicated the Asian provenance. The Lesser Himalayan component (≈166–1900 Ma) was more pronounced in the 2015KM03 and 2015KM04 samples, representing the middle to the upper portion of the formation. The recycled orogen provenance of the Kamlial Formation as deduced from the sandstone petrography supports the mixed detrital zircon provenance. Considering the provenance, we propose a tectonic model that suggests that large-scale exhumation occurred in the Himalaya as a result of Panjal thrust activation during 25–14 Ma (age of Kamlial Formation), which uplifted the hinterland zone that acted as a source area that fed the foreland basin, where the Kamlial Formation deposited. Full article
Show Figures

Figure 1

29 pages, 18360 KiB  
Article
Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin
by Xavier Coll, Marta Roigé, David Gómez-Gras, Antonio Teixell, Salvador Boya and Narcís Mestres
Minerals 2022, 12(2), 262; https://doi.org/10.3390/min12020262 - 18 Feb 2022
Cited by 6 | Viewed by 3602
Abstract
Combined sandstone petrography and heavy mineral analysis allow to decipher different sediment routing systems that could not be resolved by one method alone in the South Pyrenean foreland basin. We apply this approach to deltaic and alluvial deposits of the southern part of [...] Read more.
Combined sandstone petrography and heavy mineral analysis allow to decipher different sediment routing systems that could not be resolved by one method alone in the South Pyrenean foreland basin. We apply this approach to deltaic and alluvial deposits of the southern part of the Jaca basin, and in the time equivalent systems of the nearby Ainsa and Ebro basins, in order to unravel the evolution of source areas and the fluvial drainage from the Eocene to the Miocene. Our study allows the identification of four petrofacies and five heavy-mineral suites, which evidence the interplay of distinct routing systems, controlled by the emergence of tectonic structures. Two distinct axially-fed systems from the east coexisted in the fluvial Campodarbe Formation of the southern Jaca basin that were progressively replaced from east to west by transverse-fed systems sourced from northern source areas. In the late stages of evolution, the Ebro autochthonous basin and the Jaca piggy-back basin received detritus from source areas directly north of the basin from the Axial Zone and from the Basque Pyrenees. Coupling sandstone petrography with heavy mineral provenance analysis allows challenging the existing model of the South Pyrenean sediment dispersal, highlighting the relevance of this approach in source-to-sink studies. Full article
Show Figures

Figure 1

15 pages, 3552 KiB  
Article
Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision
by Muhammad Awais, Muhammad Qasim, Javed Iqbal Tanoli, Lin Ding, Maryam Sattar, Mirza Shahid Baig and Shahab Pervaiz
Minerals 2021, 11(12), 1399; https://doi.org/10.3390/min11121399 - 11 Dec 2021
Cited by 11 | Viewed by 3776
Abstract
This study reported the detrital zircon U-Pb geochronology of the Cenozoic sequence exposed in Kotli, northwestern Himalaya, Pakistan, which forms part of the Kashmir foreland basin. The U-Pb detrital age patterns of the Paleocene Patala Formation show a major age cluster between ~130–290 [...] Read more.
This study reported the detrital zircon U-Pb geochronology of the Cenozoic sequence exposed in Kotli, northwestern Himalaya, Pakistan, which forms part of the Kashmir foreland basin. The U-Pb detrital age patterns of the Paleocene Patala Formation show a major age cluster between ~130–290 Ma, ~500–1000 Ma and ~1000–1500 Ma, which mainly resembles the lesser and higher Himalayan sequence. However, the younger age pattern (~130–290 Ma) can be matched to the ages of the ophiolites exposed along the Indus–Tsangpo suture zone. In addition, two younger grains with 57 Ma and 55 Ma ages may indicate a contribution from the Kohistan-Ladakh arc. The detrital zircons in the upper Tertiary sequence show the increased input of younger detrital ages <100 Ma, with more pronounced peaks at ~36–58 Ma, ~72–94 Ma and ~102–166 Ma, indicating the strong resemblance to the Asian sources including the Kohistan–Ladakh arc, Karakoram block and Gangdese batholith. This provenance shift, recorded in the upper portion of Patala Formation and becoming more visible in the upper Tertiary clastic sequence (Kuldana and Murree formations), is related to the collision of the Indian and Asian plates in the northwestern Himalayas. Considering the age of the Patala Formation, we suggest that the Indian and Asian plates collided during 57–55 Ma in the northwestern Himalayas, Pakistan. Full article
Show Figures

Figure 1

23 pages, 8488 KiB  
Article
Provenance and Tectonic Setting of Lower Cretaceous Huanhe Formation Sandstones, Northwest Ordos Basin, North-Central China
by Xiaoneng Luo, Ziying Li, Yuqi Cai, Chao Yi, Zilong Zhang, Yuyan Zhang and Yan Zhang
Minerals 2021, 11(12), 1376; https://doi.org/10.3390/min11121376 - 7 Dec 2021
Cited by 6 | Viewed by 2710
Abstract
In adjustment to fulfill the requirements of the investigation regarding the lower Cretaceous sandstone uranium deposit in the Naogaodai area within the northwest of Ordos Basin, twenty-seven sandstone samples obtained from the Lower Cretaceous Huanhe Formation were analyzed for major, trace and rare [...] Read more.
In adjustment to fulfill the requirements of the investigation regarding the lower Cretaceous sandstone uranium deposit in the Naogaodai area within the northwest of Ordos Basin, twenty-seven sandstone samples obtained from the Lower Cretaceous Huanhe Formation were analyzed for major, trace and rare earth elements (REE). The source of clastic and tectonic background was additionally analyzed. The results show that Huanhe sandstone is feldspar rich sandstone, and also the mineral composition is principally quartz, albite and plagioclase; the ratio of light to heavy rare earth elements (LREE/HREE) is 9.25–10.83, with an average value of 10.00; (La/Yb)CN is 10.20–12.53, with an average value of 11.24, demonstrating that LREE is enriched and fractionated compared with HREE. REE distribution patterns are similar, which additionally reveals that Huanhe sandstone has a homogenous source; the Index of Compositional Variability (ICV) value is 1.17–1.73, with an average value of 1.35, both greater than 1, showing an immature property, which may be first-order cycle deposition. The average value of the Chemical Index of Alteration (CIA) is 50.29, suggesting that the source rock has encountered weak chemical weathering; sandstones are near-source first-cycle provenance, which is not significantly influenced by sedimentary sorting and recycling. The geochemical qualities further indicate that Huanhe sandstone was deposited in a passive margin and experienced moderate weathering. Full article
Show Figures

Figure 1

24 pages, 8907 KiB  
Article
Tectono-Paleogeographic Impact on the Permian Depositional Environment and Provenance around the Chaiwopu Depression in the Southern Junggar Basin, NW China
by Shasha Liu, Eun Young Lee, Jinliang Zhang, Michael Wagreich, Leqiang Zhao and Hui Liu
Minerals 2021, 11(11), 1237; https://doi.org/10.3390/min11111237 - 8 Nov 2021
Viewed by 2659
Abstract
The Chaiwopu Depression in the southern Junggar Basin is located between the West Bogda Mountains and the northeastern Tian Shan Mountains in northwest China. The intracontinental basin–mountain system was formed in the Central Asian Orogenic Belt during the Late Paleozoic. The Permian strata [...] Read more.
The Chaiwopu Depression in the southern Junggar Basin is located between the West Bogda Mountains and the northeastern Tian Shan Mountains in northwest China. The intracontinental basin–mountain system was formed in the Central Asian Orogenic Belt during the Late Paleozoic. The Permian strata around the depression exhibits distinct variations, which provide significant information to understand its tectonic and depositional evolution. This study investigated six outcrop sites using lithological, sedimentological, and geochemical analyses. The representative lithology of the Lower Permian is submarine lava and pyroclastic flows on the northern margins and alluvial deposits near the southern margins. In the Middle Permian sequence, the extensive distribution of alternating shale and silt/sandstone with oil shale and carbonate indicates a lacustrine setting. The sediments are composed of felsic rock-forming minerals derived mainly from island arc settings. The source rock properties correspond to the Carboniferous volcanic terrain of northeastern Tian Shan. The Lower to Middle Permian source-to-sink system occurred in an incipient level of weathering and maturation, a simple recycling process, and arid to semi-arid climatic conditions. The characteristics and changes of the depositional environment and provenance can be understood in terms of implications of tectono-paleogeographic evolution associated with the West Bogda rifting and uplift. Full article
Show Figures

Figure 1

18 pages, 5441 KiB  
Article
Geochemistry and Holocene Sedimentary Environment Evolution of Subaqueous Clinoform off Shandong Peninsula (Yellow Sea)
by Yingtao Zhu, Yongchen Xu, Mingyang Liu, Zhaobin Lin and Longhai Zhu
Minerals 2021, 11(11), 1209; https://doi.org/10.3390/min11111209 - 29 Oct 2021
Cited by 1 | Viewed by 1903
Abstract
As a key sedimentary body connecting the north and South Yellow Sea, the subaqueous clinoform off Shandong Peninsula plays an important role in the sedimentary system of China seas, and it is also a studied example in the study among the major “source [...] Read more.
As a key sedimentary body connecting the north and South Yellow Sea, the subaqueous clinoform off Shandong Peninsula plays an important role in the sedimentary system of China seas, and it is also a studied example in the study among the major “source to sink” systems. Based on AMS 14C dating, sediment grain size, major and trace element contents from core WH-05 located at the edge of the clinoform, we discuss changes in the deposition rate, analyze sediment provenance and controlling factors, and reveal the environmental evolution of the source area since the Holocene. Results from core WH-05 show that marine sedimentation began at about 8.5 ka B.P. The deposition rate decreased from the initial 28.37 m/ka to 0.52 m/ka. Sediment provenance suggests that the Huanghe river sediments have been the main source for the study area since the Holocene. The As/Al, V/Sc indicators show that the environmental oxidation environment was gradually weakened and then increased slightly starting from 7.0 ka B.P. The change in redox is consistent with the change in sea level, the deposition rate, and depositional depth. Full article
Show Figures

Figure 1

13 pages, 2746 KiB  
Article
Heavy Mineral Compositions of Sediments in the Southern Okinawa Trough and Their Provenance-Tracing Implication
by Bowen Zhu and Zhigang Zeng
Minerals 2021, 11(11), 1191; https://doi.org/10.3390/min11111191 - 27 Oct 2021
Cited by 2 | Viewed by 2450
Abstract
Heavy mineral assemblages have been widely used to effectively trace sediment sources. Heavy mineral assemblages are rarely used in research to trace sediment sources in the southern Okinawa Trough compared with geochemical proxies. In this study, the TESCAN Integrated Mineral Analyzer (TIMA) revealed [...] Read more.
Heavy mineral assemblages have been widely used to effectively trace sediment sources. Heavy mineral assemblages are rarely used in research to trace sediment sources in the southern Okinawa Trough compared with geochemical proxies. In this study, the TESCAN Integrated Mineral Analyzer (TIMA) revealed the full-size heavy mineral assemblages in the five layers of the core sediment H4-S2 in the southern Okinawa Trough. During the past 700 years, the heavy mineral assemblages in the sediments of the southern Okinawa Trough were very similar to the East China Sea shelf/Yangtze River, mainly composed of mica and chlorite; dolomite; actinolite; and hematite/magnetite. The grain size distribution of heavy minerals is in the clay–sand range and mainly in silt. Actinolite and hornblende can indicate the supply of sediments from the East China Sea shelf/Yangtze River to the southern Okinawa Trough. Due to their complex sources, pyrite, epidote, and hematite/magnetite are not adequate indicators for distinguishing between the different provenance areas. Because previous studies have used a variety of analytical methods, especially using heavy liquids with different densities, dolomite cannot be used as a marker for sediments on the Yangtze River/East China Sea shelf. Therefore, the East China Sea shelf/Yangtze River is a vital provenance of sediments from the southern Okinawa Trough since the late Holocene period. Full article
Show Figures

Figure 1

13 pages, 4926 KiB  
Article
Heavy Mineral Assemblage Variation in Late Cenozoic Sediments from the Middle Yangtze River Basin: Insights into Basin Sediment Provenance and Evolution of the Three Gorges Valley
by Chunguo Kang, Chang’an Li, Chuanyi Wei, Yufen Zhang, Huajun Jiang, Yawei Li and Rujun Guo
Minerals 2021, 11(10), 1056; https://doi.org/10.3390/min11101056 - 28 Sep 2021
Cited by 6 | Viewed by 2081
Abstract
The Three Gorges valley is one of the two key capture points of the evolution of the Yangtze River, yet the formation of this valley—from the pre-Miocene to the late Pleistocene—remains uncertain. The Jianghan Basin, a late Mesozoic–Cenozoic basin located just downstream of [...] Read more.
The Three Gorges valley is one of the two key capture points of the evolution of the Yangtze River, yet the formation of this valley—from the pre-Miocene to the late Pleistocene—remains uncertain. The Jianghan Basin, a late Mesozoic–Cenozoic basin located just downstream of the Three Gorges valley, is a crucial area for understanding the formation of the valley. In this study, we used heavy mineral assemblages to trace the provenance of Pliocene–Pleistocene sediments obtained from the 300-m-depth Zhoulao drillcore in the Jianghan Basin. Results show that heavy mineral concentrations, compositions, and species display a clear change at a depth of 110 m in the studied core, consistent with the change in values of magnetic indexes and trace-element geochemical indicators. The heavy mineral assemblage deposited below a depth of 110 m (lower section of the core) comprises zircon, epidote, leucoxene, rutile, anatase, pyrite, and titanite, whereas that deposited above 110 m (upper section) consists of hornblende, pyroxene, garnet, hematite-limonite, and magnetite. In addition, the heavy mineral assemblage of the upper section is similar to that of the modern surface fluvial sediments of the Yangtze, which indicates that materials of the upper core section of the Jianghan Basin were sourced from the upper Yangtze River Basin, west of the Three Gorges. After incision of the Three Gorges valley, sediments from the upper Yangtze were transported to the Jianghan Basin and deposited. Combining the results of this study with the known paleomagnetic chronology of the Jianghan Basin, we propose that the Three Gorges valley was incised at ca. 1.1 Ma. Full article
Show Figures

Figure 1

21 pages, 9824 KiB  
Article
Transport Direction and Scandinavian Source Regions of the Saalian Glacial and Glaciofluvial Deposits in a Case Study of Łubienica-Superunki (Central Poland)
by Maria Górska-Zabielska, Ewa Smolska and Lucyna Wachecka-Kotkowska
Minerals 2021, 11(7), 762; https://doi.org/10.3390/min11070762 - 14 Jul 2021
Cited by 2 | Viewed by 2187
Abstract
The article contains detailed petrographic studies, which covered a coarse and medium-grain gravel fraction of two layers of glacial till (units ŁS II and ŁS IV) and two layers of sand-gravelly outwash deposits (units ŁS I and ŁS III) related to the Odranian [...] Read more.
The article contains detailed petrographic studies, which covered a coarse and medium-grain gravel fraction of two layers of glacial till (units ŁS II and ŁS IV) and two layers of sand-gravelly outwash deposits (units ŁS I and ŁS III) related to the Odranian Glaciation (MIS6, Saalian) in Łubienica-Superunki, North Mazovian Lowland, central Poland. Additionally, the indicator erratics were identified to indicate their Scandinavian source areas and the directions of the ice sheet transgressions. This case study is discussed against the background of similar sediments and forms from the same age but from other places in the Polish Lowlands. Regardless of the facies types and fractions, crystalline rocks dominated over all other petrographic groups in all samples. The most common were the indicator erratics derived from the Åland Islands, followed by those from the south-eastern area of Sweden (Småland) and from Dalarna in central Sweden. Amongst the erratics of limited indicative significance, the most common were Lower Palaeozoic limestones and the Jotnian red sandstones. The complex petrographic analyses point to the dipartite nature of the studied profile. This separateness was confirmed by the TBC: 59.1–59.2° N and 18.0–18.2° E for the lower units and 58.8–59.4° N and 17.3–17.9° E for the upper ones. Full article
Show Figures

Figure 1

Back to TopTop