The Chemical Characteristics and Metallogenic Mechanism of Beryl from Cuonadong Sn-W-Be Rare Polymetallic Deposit in Southern Tibet, China
Abstract
:1. Introduction
2. Geologic Setting
2.1. Himalayan Metallogenic Belt
2.2. Geology of Cuonadong Mining Area
2.2.1. Cuonadong Gneiss Dome
2.2.2. Mineralization Characteristics
- ①
- The pegmatite Be orebody is spatially closed to muscovite granite (16 ± 1 Ma), and a large amount of beryl-bearing pegmatite is developed on the top of the muscovite granite. The gradual and transitional contact between the two implies an evolutionary relationship. Beryl is the main beryllium-bearing mineral in the disseminated form, with crystals up to 10 cm and colors ranging from blue–green to pale green, which co-exists with quartz, plagioclase, K-feldspar, muscovite, tourmaline and fluorite (Figure 4a). The content of beryl in pegmatite dikes is not evenly distributed, and the scale of individual veins is tens of centimeters to a few meters, which has not yet been evaluated [14,17].
- ②
- Skarn ore bodies are mainly W-Sn mineralization, followed by Be. Cassiterite is the dominant tin-bearing mineral, and scheelite is the main tungsten-bearing mineral (Figure 4b). Beryllium mainly occurs in silicate minerals, such as vesuvianite, albite and garnet, through element substitutions and a small amount of Be-containing minerals such as phenacite, bertrandite [32]. However, as far as the current mineral processing technology is concerned, beryllium in these skarn minerals is difficult to fully utilize [51].
- ③
- Hydrothermal vein ore bodies are produced in high-angle and nearly north–south faults and detached faults, mainly exhibiting greisenization, albitization, silicification, fluoridization and pyritization. The mineralization includes cassiterite–quartz veins (Figure 4c) and cassiterite sulfide veins (Figure 4d), which is superimposed on skarns, or occurs on the top or in the edge of granitic pegmatites, which developed later than weakly oriented mica granites, indicating that hydrothermal veins may be formed in garnet-bearing mica granites. The latest exploration results show that 11 new hydrothermal vein Sn-W-Be ore bodies have been discovered in the Xianglin area, among which one main ore body (No. Z6 orebody) has the predicted potential resources of Sn 73,800 tons at 1.75%, WO3 19,900 tons at 0.36% and BeO 3100 tons at 0.14% [51]. Beryllium occurs mainly in beryl, and tin and tungsten occur in cassiterite and scheelite, respectively. The hydrothermal vein Sn-W-Be ore bodies are the most significant mineralization in the Cuonadong mining area [17,51].
3. Analytical Methods
4. Results
4.1. Occurrence
4.2. Chemical Composition
4.3. LA-ICP-MS Mapping
4.4. Unit Cell Parameters
5. Discussion
5.1. Crystal Chemical Features
5.2. Classification
5.3. Metallogenic Mechanism
6. Conclusions
- (1)
- In terms of composition, beryls in the Cuonadong deposit are alkaline beryls, among which beryl-I is Li-Cs beryl, and beryl-II consists of Na and Na-Li beryl. Structurally, they are t-beryls. This indicates that beryl has experienced magmatism to hydrothermal alkali-metasomatism in the late stage of pegmatitic magmatism during formation.
- (2)
- The mechanism of element substitution in Beryl-I includes (Na,Cs)Li□-1Be-1 channel-tetrahedral substitution, (Na,Cs)Fe2+□-1Al-1 channel-octahedral substitution and NaCs-1 the mutual substitution of alkali metal ions in the “channel”, whereas that in Beryl-II consists of NaLi□-1Be-1 channel-tetrahedral substitution and Na(Fe2+,Mg)□-1Al-1 channel-octahedral substitution.
- (3)
- The precipitation of Beryl-I is mostly caused by the emplacement of highly fractionated magma containing Be to the top of the rock mass or surrounding rock, the melt-fluid undercooling, and the crystallization of volatile minerals (such as tourmaline and fluorite).
- (4)
- Beryl-II precipitates owe to the ore-forming fluid mixing with the hydrothermal water and cooling and large amounts of crystallization of volatile minerals (mainly fluorite).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- London, D.; Evensen, J.M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Rev. Mineral. Geochem. 2002, 50, 445–485. [Google Scholar] [CrossRef]
- Evensen, J.M.; London, D. Experimental partitioning of Be, Cs, and other trace elements between cordierite and felsic melt, and the chemical signature of S-type granite. Contrib. Mineral. Petrol. 2003, 144, 739–757. [Google Scholar] [CrossRef]
- Černý, P. Alkali variations in pegmatitic beryls and their petrogenetic implications. Neues Jahrb. Mineral. Abh. 1975, 123, 198–212. [Google Scholar]
- Charoy, B. Beryllium speciation in evolved granitic magmas: Phosphates versus silicates. Eur. J. Mineral. 1999, 11, 135–148. [Google Scholar] [CrossRef]
- Evensen, J.M.; London, D.; Wendlandt, R.F. Solubility and stability of beryl in granitic melts. Am. Mineral. 1999, 84, 733–745. [Google Scholar] [CrossRef]
- London, D. Reading Pegmatites: Part 1—What Beryl Says. Rocks Min. 2015, 90, 138–153. [Google Scholar] [CrossRef]
- Barton, M.D.; Young, S. Non-pegmatitic Deposits of Beryllium: Mineralogy, Geology, Phase Equilibria and Origin. Rev. Mineral. Geochem. 2002, 50, 591–691. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Wang, C.L.; Ma, L.S. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrol. Sin. 2019, 35, 1999–2012. [Google Scholar]
- Černý, P.; Anderson, A.J.; Tomascak, P.B.; Chapman, R. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. Can. Mineral. 2003, 41, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.C.; Che, X.D.; Zhang, W.L.; Zhang, A.C.; Zhang, H. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). Eur. J. Mineral. 2009, 21, 795–809. [Google Scholar]
- Zhou, Q.; Qin, K.; Tang, D.; Wang, C.; Tian, Y.; Sakyi, P.A. Mineralogy of the Koktokay No.3 Pegmatite, Altai, NW China: Implications for Evolution and Melt-Fluid Processes of Rare-metalpegmatites. Eur. J. Mineral. 2015, 27, 433–457. [Google Scholar] [CrossRef]
- Bragg, W.L.; West, J. The structure of beryl, Be3Al2Si6O18. Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character. 1926, 111, 691–714. [Google Scholar]
- Gibbs, G.V.; Breck, D.W.; Meagher, E.P. Structural refinement of hydrous and anhydrous synthetic beryl, Al2(Be3Si6)O18 and emerald, Al1.9Cr0.1(Be3Si6)O18. Lithos 1968, 1, 275–285. [Google Scholar] [CrossRef]
- Li, G.M.; Zhang, L.K.; Jiao, Y.J.; Xia, X.B.; Dong, S.L.; Fu, J.G.; Liang, W.; Zhang, Z.; Wu, J.Y.; Dong, L.; et al. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, souther Tibet. Miner. Depos. 2017, 36, 1003–1008. [Google Scholar]
- Zhang, Z.; Zhang, L.K.; Li, G.M.; Liang, W.; Xia, X.B.; Fu, J.G.; Dong, S.L.; Ma, G.T. The Cuonadong Gneiss Dome of North Himalaya: A New Member of Gneiss Dome and a New Proposition for the Ore-controlling Role of North Himalaya Gneiss Domes. Acta Petrol. Sin. 2017, 38, 754–766. [Google Scholar]
- Liang, W.; Zhang, L.K.; Xia, X.B.; Ma, G.T.; Huang, Y.; Zhang, Z.; Fu, J.G.; Cao, H.W.; Miao, H.Q.; Li, G.M. Geology and preliminary mineral genesis of the Cuonadong W-Sn polymetallic deposit, Southern Tibet, China. Earth Sci. 2018, 43, 2742–2754. [Google Scholar]
- Xia, X.B.; Li, G.M.; Zhang, L.K.; Zhang, Z.; Cao, H.W.; Liang, W. Geological characteristics of and prospecting strategy for the Xianglin Be-Sn polymetallic ore deposit in the Cuonadong gneiss dome in southern Tibet. Earth Sci. Front. 2022, 29, 93–106. [Google Scholar]
- Gao, L.E.; Gao, J.H.; Zhao, L.H.; Hou, K.J.; Tang, S.H. The Miocene leucogranite in the Nariyongcuo gneiss dome, southern Tibet: Products from melting metapelite and fractional crystallization. Acta Petrol. Sin. 2017, 33, 2395–2411. [Google Scholar]
- Zhang, L.K.; Zhang, Z.; Li, G.M.; Dong, S.L.; Xia, X.B.; Liang, W.; Fu, J.G.; Cao, H.W. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Sci. 2018, 43, 2664–2683. [Google Scholar]
- Dong, H.W.; Xu, Z.Q.; Meng, Y.K.; Yi, Z.Y. Geochronology of leucogranites in the Cuonadong dome, southern Tibet and limitation of the timing of the Southern Tibet etachment System (STDS). Acta Petrol. Sin. 2017, 33, 3741–3752. [Google Scholar]
- Fu, J.G.; Li, G.M.; Wang, G.H.; Zhang, L.K.; Liang, W.; Zhang, Z.; Dong, S.L.; Huang, Y. Timing of E-W extension deformation in North Himalaya: Evidences from ArAr age in the Cuonadong dome, South Tibet. Earth Sci. 2018, 43, 2638–2650. [Google Scholar]
- Fu, J.G.; Li, G.M.; Wang, G.H.; Zhang, L.K.; Liang, W.; Zhang, Z.; Zhang, X.Q.; Huang, Y. Synchronous granite intrusion and E–W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. Int. J. Earth Sci. 2018, 107, 2023–2041. [Google Scholar] [CrossRef]
- Fu, J.; Li, G.; Wang, G.; Zhang, L.; Liang, W.; Zhang, X.; Jiao, Y.; Dong, S.; Huang, Y. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China: New constraints on the timing of the South Tibetan Detachment System and its relationship to North Himalayan Gneiss Domes. Terra Nova 2020, 32, 300–323. [Google Scholar] [CrossRef]
- Xie, L.; Qiu, H.; Bai, X.; Zhang, W.; Wang, Q.; Xia, X. Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himaaya. Acta Geochim. 2018, 37, 347–359. [Google Scholar] [CrossRef]
- Xia, X.B.; Li, G.M.; Cao, H.W.; Liang, W.; Fu, J.G. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet. Earth Sci. 2019, 44, 2207–2223. [Google Scholar]
- Xia, X.B.; Xiang, A.P.; Li, G.M.; Zhang, L.K.; Cao, H.W.; Zhang, Z.; Liang, W. Neoproterozoic magmatism of Cuonadong dome and its tectonic implication, Tibet, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2019, 46, 435–448. [Google Scholar]
- Cao, H.W.; Li, G.M.; Zhang, Z.; Zhang, L.K.; Dong, S.L.; Xia, X.B.; Liang, W.; Fu, J.G.; Huang, Y.; Xiang, A.P.; et al. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geol. Rev. 2020, 119, 103403. [Google Scholar] [CrossRef]
- Cao, H.W.; Li, G.M.; Zhang, R.Q.; Zhang, Y.H.; Zhang, L.K.; Dai, Z.W.; Zhang, Z.; Liang, W.; Dong, S.L.; Xia, X.B. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Res. 2021, 92, 72–101. [Google Scholar] [CrossRef]
- Liang, W.; Li, G.M.; Zhang, L.K.; Fu, J.G.; Huang, Y.; Zhang, Z. Cuonadong Be-rare polymetallic metal deposit: Constraints from Ar-Ar age of hydrothermal muscovite. Sediment. Geol. Tethyan Geol. 2020, 40, 76–81. [Google Scholar]
- Lin, B.; Tang, J.X.; Zheng, W.B.; Leng, Q.F.; Lin, X.; Wang, Y.Y.; Meng, Z.; Tang, P.; Ding, S.; Xu, Y.F.; et al. Geochemical characteristics, age and genesis of Cuonadong leucogranite, Tibet. Acta Petrol. Miner. 2016, 35, 391–406. [Google Scholar]
- Huang, C.M. Petrogenesis of the Cuonadong-Lhozag Leucogranites and Implication for Tectonic Evolution and Be-W-Sn Metallogeny in Southern Tibet. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- He, C.T.; Qin, K.Z.; Li, J.X.; Zhou, Q.F.; Zhao, J.X.; Li, G.M. Preliminary study on occurrence status of beryllium and genetic mechanism in Cuonadong tungsten-tin-beryllium deposit, eastern Himalaya. Acta Petrol. Sin. 2020, 36, 3593–3606. [Google Scholar]
- Shen, J.Q.; Hu, Z.K.; Cui, S.Y.; Zhang, Y.F.; Li, E.Q.; Liang, W.; Xu, B. A Study on Beryl in the Cuonadong Be-W-Sn Polymetallic Deposit, Longzi County, Tibet, China. Crystals 2021, 11, 777. [Google Scholar] [CrossRef]
- Tao, X.Y.; Xie, L.; Wang, R.C.; Zhang, R.Q.; Hu, H.; Liu, C. Mineralogical characteristics of beryl: A case study of the beryls from Cuona and Qomolangma district in Himalaya. J. Nanjing Univ. (Nat. Sci.) 2020, 56, 815–829. [Google Scholar]
- Burchfiel, B.C.; Chen, Z.; Hodges, K.V.; Liu, Y.; Royden, L.H.; Deng, C.; Xu, J. The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Am. Spec. Pap. 1992, 269, 1–41. [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Burg, J.-P.; Bouilhol, P. Timeline of the South-Tibet-Himalayan belt: The geochronological record of subduction, collision, and underthrusting from zircon and monazite U-Pb ages. Can. J. Earth Sci. 2019, 56, 1318–1332. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.S.; Hou, Z.Q.; Meng, X.J.; Liu, Y.C.; Fei, H.C.; Tian, S.H.; Li, Z.Q.; Gao, W. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geol. Rev. 2009, 36, 194–212. [Google Scholar] [CrossRef]
- Zhai, W.; Sun, X.; Yi, J.; Zhang, X.; Mo, R.; Zhou, F.; Wei, H.; Zeng, Q. Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol. Rev. 2014, 58, 68–90. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zhang, H.R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geol. Rev. 2015, 70, 346–384. [Google Scholar] [CrossRef]
- Sun, X.M.; Wei, H.X.; Zhai, W.; Shi, G.Y.; Liang, Y.H.; Mo, R.W.; Han, M.X.; Yi, J.Z.; Zhang, X.G. Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geol. Rev. 2016, 74, 196–210. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Y.; Mathur, R.; Jiang, J.; Zhang, S.; Zhang, J.; Yu, M. Multiple mineralization events in the Zhaxikang Sb–Pb–Zn–Ag deposit and their relationship with geodynamic evolution in the North Himalayan Metallogenic Belt, South Tibet. Ore Geol. Rev. 2019, 105, 201–215. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R.C.; Wu, F.Y.; Xie, L.; Liu, X.C.; Li, X.K.; Yang, L.; Li, X.J. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos 2020, 358–359, 105421. [Google Scholar] [CrossRef]
- Visonà, D.; Lombardo, B. Two mica and tourmaline leucogranites from the Everest⁃Makalu region (NepalTibet). Himalayan leucogranite genesis by isobaric heating? Lithos 2002, 62, 125–150. [Google Scholar] [CrossRef]
- Xie, L.; Tao, X.Y.; Wang, R.C. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos 2020, 354–355, 105286. [Google Scholar] [CrossRef]
- Wang, R.C.; Wu, F.Y.; Xie, L.; Liu, X.C.; Wang, J.M.; Yang, L.; Lai, W.; Liu, C. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. China Earth Sci. 2017, 60, 1655–1663. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- Wu, F.Y.; Wang, R.C.; Liu, X.C.; Xie, L. New breakthroughs in the studies of Himalayan rare-metal mineralization. Acta Petrol. Sin. 2021, 37, 3261–3276. [Google Scholar]
- Zhang, Z.; Li, G.M.; Zhang, L.K.; Dong, S.L.; Liang, W.; Fu, J.G.; Huang, Y.; Cao, H.W.; Xia, X.B. The early Oligocene beryl-bearing pegmatite in the Cuonadong dome, southern Tibet: Its forming mechanism and geological significances. Sedimentary Geol. Tethyan Geol. 2020, 40, 14–30. [Google Scholar]
- Li, G.M.; Zhang, L.K.; Zhang, Z.; Xia, X.B.; Liang, W.; Hou, C.Q. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau. Sedimentary Geol. Tethyan Geol. 2021, 41, 351–360. [Google Scholar]
- Tunheng, A.; Hirata, T. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. J. Anal. At. Spectrom. 2004, 19, 932–934. [Google Scholar] [CrossRef]
- Liu, S.B.; Wang, D.H.; Chen, Y.C.; Li, J.K.; Ying, L.J.; Xu, J.X.; Zeng, Z.L. 40Ar/39Ar ages of muscovite from different types tungsten-bearing quartz veins in the ChongYu-You concentrated mineral area in Gannan region and its geological significance. Acta Petrol. Sin. 2008, 82, 932–940. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Sardi, F.G.; Heimann, A. Pegmatitic beryl as indicator of melt evolution: Example from the Velasco district, Pampeana pegmatite province, Argentina, and review of worldwide occurrences. Can. Mineral. 2014, 52, 809–836. [Google Scholar] [CrossRef]
- Giuliani, G.; Cheilletz, A.; Zimmermann, J.L.; Cheiletz, A.; Arboleda, C.; Charoy, B.; Goget, P.; Frontan, F.; Giars, D. Fluid composition, δD of channel H2O, and δ18O of lattice oxygen in beryls: Genetic implications for Brazilian, Colombian, and Afghanistani emerald deposits. Int. Geol. Rev. 1997, 39, 400–424. [Google Scholar] [CrossRef]
- Zhao, T.X.; Chen, W.D.; Yin, T. EPMA quantitative analysis of beryllium mineral beryl. Acta Miner. Sin. 2019, 39, 169–175. [Google Scholar]
- Turner, D.; Groat, L.A.; Hart, C.J.R.; Mortensen, J.K.; Linnen, R.L.; Giuliani, G.; Wengzynowski, W. Mineralogical and geochemical study of the True Blue aquamarine showing, southern Yukon. Can. Mineral. 2007, 45, 203–227. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Černý, P. The alkali-metal positions in Cs-Li beryl. Can. Mineral. 1977, 15, 414–421. [Google Scholar]
- Sherriff, B.L.; Grundy, H.D.; Hartman, J.S.; Hawthorne, F.C.; Černý, P. The incorporation of alkalis in beryl: Multi-nuclear MAS NMR and crystal-structure study. Can. Mineral. 1991, 29, 271–285. [Google Scholar]
- Artioli, G.; Rinaldi, R.; Stahl, K.; Zanazzi, P.F. Structure refinements of beryl by single-crystal neutron and X-ray diffraction. Am. Mineral. 1993, 78, 762–768. [Google Scholar]
- Černý, P. Mineralogy of beryllium in granitic pegmatites. Mineral. Geochem. 2002, 50, 405–444. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Huminicki, D.M.C. The crystal chemistry of beryllium. Rev. Mineral. Geochem. 2002, 50, 333–403. [Google Scholar] [CrossRef]
- Lum, J.E.; Viljoen, F.; Cairncross, B.; Frei, D. Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia. J. Afr. Earth Sci. 2016, 124, 104–125. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Sun, D.; Zhou, Y. Morphology and gensis typomorphism of minerals in W-Sn-Be deposit of Huya, Sichuan. Geosci. J. 2007, 32, 75–81. [Google Scholar]
- Uher, P.; Chudík, P.; Bacik, P. Beryl composition and evolution trends: An example from granitic pegmatites of the beryl⁃columbite subtype,Western Carpathians, Slovakia. J. Geosci. 2010, 55, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.Z.; Zhou, Q.F.; Tang, D.M.; Wang, R.C. Types, interal structure patterns, mineralization and prospects of rare-element pegmatites in East Qinling Mountain in comparison with feature of Chinese Altay. Miner. Depos. 2019, 38, 970–982. [Google Scholar]
- Tang, Y.; Qin, S.X.; Zhao, J.Y.; Lü, Z.H.; Liu, X.Q.; Wang, H.; Chen, J.Z.; Zhang, H. Solubility ofrare metals as a constraint on mineralization ofgranitic pegmatite. Earth Sci. Front. 2022, 29, 81–92. [Google Scholar]
- Zhao, K.H. Mineralogy and Metallogenic Characteristics of Beryl in Pingjiang, Hunan Province, China. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Xu, X.W.; Hong, T.; Li, H.; Ke, Q.; Chen, J.Z.; Liu, S.K.; Zhai, M.G. Concept of high-tempreture granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh. Acta Petrol. Sin. 2020, 36, 3572–3592. [Google Scholar]
- Dai, Z.W. Study on Mineralization of the Cuonadong Be-Sn-W Polymetallic Deposit, Tibet, China. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Dai, Z.W.; Li, G.M.; Ding, J.; Zhang, L.K.; Cao, H.W.; Zhang, Z.; Liang, W. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Sci. 2019, 44, 1849–1859. [Google Scholar]
- Wood, S.A. Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300 °C at saturated vapor-pressure-Application to Bertrandite Phenakite Deposits. Ore Geol. Rev. 1992, 7, 249–278. [Google Scholar] [CrossRef]
- Long, Z.Y.; Yu, X.Y.; Zheng, Y.Y. Ore formation of the Dayakou emerald deposit (Southwest China) constrained by chemical and boron isotopic composition of tourmaline. Ore Geol. Rev. 2021, 135, 104208. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hu, H. Paragenetic assemblage of beryllium silicates and phosphates from the Nanping granite pegmatite dyke; Fujian province southeastern China. Can. Mineral. 2011, 49, 1175–1187. [Google Scholar] [CrossRef]
- Ge, Z.B. Emerald orebody in metaggranite-greisen beryl deposit. Geol. Explor. 1983, 6, 24–31. [Google Scholar]
- Rao, C.; Wang, R.C.; Hu, H. Electron-Microprobe Compositions and Genesis of Beryls from the Nanping No. 31 Granitic Pegmatite (Fujian Province, Southeastern China). Geol. J. China Univ. 2009, 15, 496–505. [Google Scholar]
- Wu, F.Y.; Liu, Z.C.; Liu, X.C. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol. Sin. 2015, 31, 1–36. [Google Scholar]
Elt (wt.%) | Beryl-I n = 9 | Beryl-II n = 23 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Avg. | CND21-01 | CND21-02 | CND21-03 | Max. | Min. | Avg. | XL20-03 | XL20-05 | XL20-08 | |
SiO2 | 64.42 | 63.33 | 63.72 | 63.48 | 63.40 | 64.10 | 65.41 | 63.57 | 64.33 | 65.13 | 65.41 | 64.25 |
Al2O3 | 17.63 | 17.19 | 17.38 | 17.26 | 17.63 | 17.29 | 17.43 | 14.24 | 15.97 | 16.61 | 16.70 | 15.66 |
MgO | 0.03 | 0.00 | 0.01 | 0.03 | 0.02 | 0.01 | 2.06 | 1.07 | 1.62 | 1.37 | 1.32 | 1.66 |
CaO | 0.02 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.06 | 0.00 | 0.03 | 0.02 | 0.01 | 0.02 |
FeO | 0.59 | 0.26 | 0.41 | 0.48 | 0.26 | 0.46 | 1.31 | 0.17 | 0.61 | 0.23 | 0.25 | 0.67 |
MnO | 0.04 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 |
TiO2 | 0.06 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.01 | 0.03 |
Na2O | 0.90 | 0.68 | 0.81 | 0.84 | 0.68 | 0.90 | 1.66 | 1.25 | 1.43 | 1.33 | 1.32 | 1.25 |
K2O | 0.05 | 0.02 | 0.03 | 0.04 | 0.03 | 0.03 | 0.08 | 0.01 | 0.04 | 0.05 | 0.02 | 0.02 |
Cs2O | 1.77 | 0.31 | 1.01 | 1.29 | 1.77 | 0.42 | 0.39 | 0.00 | 0.03 | 0.05 | 0.00 | 0.00 |
Rb2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Li2O-LA | 0.87 | 0.74 | 0.78 | 0.76 | 0.87 | 0.75 | 0.56 | 0.04 | 0.31 | 0.05 | 0.05 | 0.49 |
Li2Ocal | 2.48 | 1.23 | 1.85 | 2.18 | 2.48 | 1.35 | 1.73 | 1.29 | 1.53 | 1.45 | 1.35 | 1.29 |
BeOcal | 12.05 | 11.69 | 11.89 | 11.88 | 11.69 | 11.98 | 13.55 | 12.27 | 12.86 | 13.51 | 13.55 | 12.46 |
H2Ocal | 1.60 | 1.41 | 1.52 | 1.55 | 1.41 | 1.60 | 2.25 | 1.26 | 2.00 | 1.97 | 1.96 | 1.90 |
Total | 100.75 | 96.13 | 98.24 | 98.19 | 98.33 | 98.04 | 100.97 | 98.04 | 99.56 | 100.51 | 100.84 | 98.60 |
apfu based on 18 oxygen atoms | ||||||||||||
Al3+ | 1.97 | 1.92 | 1.94 | 1.93 | 1.97 | 1.92 | 1.90 | 1.60 | 1.75 | 1.80 | 1.80 | 1.73 |
Mg2+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.15 | 0.23 | 0.19 | 0.18 | 0.23 |
Fe2+ | 0.05 | 0.02 | 0.03 | 0.04 | 0.02 | 0.04 | 0.10 | 0.01 | 0.05 | 0.02 | 0.02 | 0.05 |
Mn2+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ti2+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
∑O | 2.00 | 1.95 | 1.97 | 1.97 | 2.00 | 1.96 | 2.09 | 1.96 | 2.03 | 2.00 | 2.00 | 2.02 |
Ca2+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Na+ | 0.16 | 0.12 | 0.15 | 0.15 | 0.12 | 0.16 | 0.30 | 0.23 | 0.26 | 0.24 | 0.23 | 0.23 |
K+ | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Cs+ | 0.07 | 0.01 | 0.04 | 0.05 | 0.07 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rb+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
∑Ch | 0.21 | 0.18 | 0.19 | 0.21 | 0.20 | 0.18 | 0.31 | 0.23 | 0.27 | 0.25 | 0.24 | 0.23 |
Li+ | 0.33 | 0.28 | 0.30 | 0.29 | 0.33 | 0.29 | 0.21 | 0.02 | 0.12 | 0.02 | 0.02 | 0.19 |
Be2+ | 2.72 | 2.67 | 2.70 | 2.71 | 2.67 | 2.71 | 2.98 | 2.79 | 2.88 | 2.98 | 2.98 | 2.81 |
∑(T2) | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Si (T1) | 6.05 | 6.02 | 6.03 | 6.03 | 6.02 | 6.05 | 6.08 | 5.94 | 6.00 | 5.99 | 5.99 | 6.04 |
Let (ppm) | Max. | Min. | Avg. | Beryl-I n = 10 | Max. | Min. | Avg. | Beryl-II n = 12 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CND21-01 | CND21-02 | CND21-03 | XL20-05 | XL20-06 | XL20-07 | |||||||
Li | 4253.13 | 3429.60 | 3676.10 | 3519.22 | 4033.13 | 3495.12 | 1106.65 | 2291.52 | 207.70 | 207.70 | 1913.45 | 215.32 |
Be | 53,207.23 | 48,756.05 | 50,687.47 | 50,161.02 | 51,617.32 | 51,450.77 | 52,146.64 | 56,414.49 | 49,970.46 | 53,987.71 | 50,709.42 | 52,193.78 |
Rb | 215.31 | 111.98 | 167.14 | 215.31 | 141.68 | 111.98 | 147.24 | 246.53 | 41.68 | 240.99 | 139.45 | 41.68 |
Cs | 16,734.25 | 5499.54 | 10,339.28 | 5499.54 | 12,632.12 | 5587.39 | 1182.12 | 2313.76 | 472.71 | 1953.34 | 695.12 | 472.71 |
V | 3.18 | 0.00 | 0.78 | 0.00 | 0.94 | 3.18 | 36.15 | 65.95 | 3.35 | 18.05 | 3.35 | 65.95 |
Cr | 634.58 | 13.63 | 136.48 | 20.24 | 32.65 | 243.24 | 206.25 | 642.60 | 17.53 | 99.31 | 42.96 | 59.71 |
Co | 4.96 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.64 | 5.06 | 0.00 | 0.00 | 0.00 | 1.03 |
Ni | 6.03 | 0.00 | 0.91 | 0.00 | 6.03 | 0.00 | 8.42 | 65.86 | 0.00 | 15.55 | 65.86 | 0.00 |
Cu | 18.40 | 0.00 | 3.99 | 0.00 | 15.78 | 0.00 | 20.98 | 111.86 | 0.00 | 0.00 | 21.39 | 36.21 |
Zn | 482.89 | 231.49 | 396.58 | 463.16 | 346.16 | 231.49 | 280.30 | 1781.68 | 39.63 | 39.63 | 188.74 | 69.41 |
Ga | 41.38 | 24.32 | 34.72 | 37.38 | 30.41 | 39.08 | 43.97 | 94.94 | 18.35 | 94.94 | 41.31 | 40.44 |
As | 43.17 | 0.00 | 9.63 | 7.49 | 6.67 | 32.09 | 1511.08 | 6432.48 | 0.00 | 278.44 | 917.08 | 6432.48 |
Sr | 1.77 | 0.00 | 0.20 | 1.77 | 0.00 | 0.00 | 2.50 | 16.88 | 0.00 | 0.00 | 0.00 | 16.88 |
Nb | 0.33 | 0.00 | 0.09 | 0.14 | 0.33 | 0.00 | 0.13 | 0.51 | 0.00 | 0.00 | 0.35 | 0.12 |
Ta | 1.02 | 0.00 | 0.14 | 0.11 | 0.01 | 0.00 | 0.11 | 0.27 | 0.00 | 0.02 | 0.00 | 0.10 |
W | 0.15 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.08 | 0.32 | 0.00 | 0.00 | 0.00 | 0.18 |
Bi | 0.12 | 0.00 | 0.03 | 0.04 | 0.00 | 0.04 | 2.22 | 9.17 | 0.00 | 0.25 | 2.40 | 9.17 |
Pb | 2.56 | 0.00 | 0.41 | 0.01 | 0.09 | 0.36 | 1.33 | 5.00 | 0.00 | 0.04 | 0.03 | 2.06 |
Th | 1.73 | 0.00 | 0.18 | 0.00 | 0.00 | 0.04 | 2.62 | 16.46 | 0.00 | 0.59 | 1.79 | 16.46 |
Sample | a (Å) | b (Å) | c (Å) | V (Å3) | c/a |
---|---|---|---|---|---|
CND21-1 | 9.2103 | 9.2103 | 9.2209 | 677.2920 | 1.0012 |
CND21-2 | 9.2141 | 9.2141 | 9.2243 | 677.9290 | 1.0011 |
CND21-3 | 9.2136 | 9.2136 | 9.2231 | 677.9180 | 1.0010 |
Avg. | 9.2127 | 9.2127 | 9.2228 | 677.7130 | 1.0011 |
Max. | 9.2141 | 9.2141 | 9.2243 | 677.9290 | 1.0012 |
Min. | 9.2103 | 9.2103 | 9.2209 | 677.2920 | 1.0010 |
XL20-1 | 9.2140 | 9.2140 | 9.2180 | 677.7410 | 1.0004 |
XL20-2 | 9.2111 | 9.2111 | 9.2202 | 677.4750 | 1.0010 |
XL20-3 | 9.2139 | 9.2134 | 9.2206 | 677.9130 | 1.0007 |
XL20-4 | 9.2116 | 9.2130 | 9.2200 | 677.7190 | 1.0009 |
Avg. | 9.2127 | 9.2129 | 9.2197 | 677.7120 | 1.0008 |
Max. | 9.2140 | 9.2140 | 9.2206 | 677.9130 | 1.0010 |
Min. | 9.2111 | 9.2111 | 9.2180 | 677.4750 | 1.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, G.; Liang, W.; Zhang, Z. The Chemical Characteristics and Metallogenic Mechanism of Beryl from Cuonadong Sn-W-Be Rare Polymetallic Deposit in Southern Tibet, China. Minerals 2022, 12, 497. https://doi.org/10.3390/min12050497
Wang Y, Li G, Liang W, Zhang Z. The Chemical Characteristics and Metallogenic Mechanism of Beryl from Cuonadong Sn-W-Be Rare Polymetallic Deposit in Southern Tibet, China. Minerals. 2022; 12(5):497. https://doi.org/10.3390/min12050497
Chicago/Turabian StyleWang, Yiyun, Guangming Li, Wei Liang, and Zhi Zhang. 2022. "The Chemical Characteristics and Metallogenic Mechanism of Beryl from Cuonadong Sn-W-Be Rare Polymetallic Deposit in Southern Tibet, China" Minerals 12, no. 5: 497. https://doi.org/10.3390/min12050497
APA StyleWang, Y., Li, G., Liang, W., & Zhang, Z. (2022). The Chemical Characteristics and Metallogenic Mechanism of Beryl from Cuonadong Sn-W-Be Rare Polymetallic Deposit in Southern Tibet, China. Minerals, 12(5), 497. https://doi.org/10.3390/min12050497