Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Method
2.1. Description of Sampling Sites
2.2. Rock Sampling
2.3. Spectroscopic Measurements
2.4. Method
2.4.1. Data Preprocessing
2.4.2. Spectral Feature Analysis
2.4.3. Establishment of the Model
3. Results and Discussion
3.1. Features of Emission Spectrum
3.2. Model Establishment and Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, J.; Rivard, B.; Rogge, D.; Sánchez-Azofeifa, A. The longwave infrared (3–14 μm) spectral properties of rock encrusting lichens based on laboratory spectra and airborne SEBASS imagery. Remote Sens. Environ. 2013, 131, 173–181. [Google Scholar] [CrossRef]
- Okada, N.; Maekawa, Y.; Owada, N.; Haga, K.; Shibayama, A.; Kawamura, Y. Automated Identification of Mineral Types and Grain Size Using Hyperspectral Imaging and Deep Learning for Mineral Processing. Minerals 2020, 10, 809. [Google Scholar] [CrossRef]
- BSchulz, G.; Merker, G.; Gutzmer, J. Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores. Minerals 2019, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.; Kraft, M.; Sharp, T.; Christensen, P. Effects of chemical weathering on infrared spectra of Columbia River Basalt and spectral interpretations of martian alteration. Earth Planet. Sci. Lett. 2006, 248, 822–829. [Google Scholar] [CrossRef]
- Clark, R.; Swayze, G.; Livo, K.; Kokaly, R.; Sutley, S.; Dalton, J.; McDougal, R.; Gent, C. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets 2003, 108, E12. [Google Scholar] [CrossRef]
- Meer, F.; Werff, H.; Ruitenbeek, F.; Hecker, C.; Bakker, W.; Noomen, M.; Meijde, M.; Carranza, E.M.; Smeth, J.; Woldai, T. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, L.; Jiang, Q.; Wang, H.; Liu, T. Review of thermal-infrared spectroscopy applied in geological ore exploration. Acta Geol. Sin. 2020, 94, 2520–2533. [Google Scholar]
- Christensen, P.; Bandfield, J.; Hamilton, V.; Howard, D.; Lane, M.; Piatek, J.; Ruff, S.; Stefanov, W. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. Planets 2000, 105, 9735–9739. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, A.; Hook, S.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Hueni, A.; Nieke, J.; Schopfer, J.; Kneubühler, M.; Itten, K. The spectral database SPECCHIO for improved long-term usability and data sharing. Comput. Geosci. 2009, 35, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Wu, L.; Mao, W.; Zhou, S.; Liu, S. An Open Integrated Rock Spectral Library (RockSL) for a Global Sharing and Matching Service. Minerals 2022, 12, 118. [Google Scholar] [CrossRef]
- Govil, H.; Gill, N.; Rajendran, S.; Santosh, M.; Kumar, S. Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geol. Rev. 2018, 92, 271–283. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Moarefvand, P.; Golmohammadi, A. Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods. Geol. Ecol. Landsc. 2020, 4, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Loughlin, W. Principal component analysis for alteration mapping. Proc. Themat. Conf. Geol. Remote Sens. 1991, 8, 293–306. [Google Scholar]
- Rokos, D.; Argialas, D.; Mavrantza, R.; Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas. Nat. Resour. Res. 2000, 9, 277–293. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, Q.; Chen, S.; Li, Y.; Cha, F. Extraction of Alteration Anomaly Information by Feature-Based Principal Component Analysis from ASTER Data. Earth Sci.—J. China Univ. Geosci. 2015, 40, 1381–1385. [Google Scholar]
- Liu, B.; Bai, S.; Yu, P.; Chen, M.; Pan, J.; Chen, Y. Land use analysis of plateau lake watershed based on GF and multi-source data. Bull. Surv. Mapp. 2019, 12, 77–82. [Google Scholar]
- Li, W.; Liu, J.; Bao, N.; Mao, X.; Mao, Y.; Fu, Y.; Cao, W.; Huang, J.; Zhao, Z. Salinity Monitoring at Saline Sites with Visible–Near-Infrared Spectral Data. Minerals 2021, 11, 1086. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Qi, Y.; Liu, H. Effect of Particle Size on Reflectance Spectra of Anshan Iron Ore. Spectrosc. Spectr. Anal. 2021, 41, 1513–1518. [Google Scholar]
- Song, L.; Liu, S.; Yu, M.; Mao, Y.; Wu, L. A Classification Method Based on the Combination of Visible, Near-Infrared and Thermal Infrared Spectrum for Coal and Gangue Distinguishment. Spectrosc. Spectr. Anal. 2017, 37, 416–422. [Google Scholar]
- Zhang, R.; Cao, H.; Zeng, M.; Zhang, D.; Li, G. Scientific belt lithologic mapping based on ASTER spectral analysis: A case study from the Tashkorgan area (Xinjiang, China). Acta Petrol. Sin. 2016, 32, 3835–3846. [Google Scholar]
- Neal, L.; Wilkinson, J.; Mason, P.; Chang, Z. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. J. Geochem. Explor. 2018, 184, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Lypaczewski, P.; Rivard, B. Estimating the Mg# and AlVI content of biotite and chlorite from shortwave infrared reflectance spectroscopy: Predictive equations and recommendations for their use. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 116–126. [Google Scholar]
- Lin, D.; Tang, S.; Xi, Z.; Zhang, B. Geochemical Characteristics of Late Ordovician Shales in the Upper Yangtze Platform, South China: Implications for Redox Environmental Evolution. Minerals 2021, 11, 710. [Google Scholar] [CrossRef]
- Li, J.; Guo, J.; Wang, Z.; Wang, Z.; Liu, C. Geological characteristics of organic-rich shale in Yanxi formation of middle Ordovician in central Hunan. J. Cent. South Univ. Sci. Technol. 2018, 49, 2776–2786. [Google Scholar]
- Fisenko, A.; Lemberg, V. Polylogarithmic Representation of Radiative and Thermodynamic Properties of Thermal Radiation in a Given Spectral Range: II. Real-Body Radiation. Int. J. Thermophys. 2015, 36, 2705–2719. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.; King, T.; Gorelick, N. Automatic continuum analysis of reflectance spectra. In Proceedings of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, CA, USA, 2–4 June 1987. [Google Scholar]
- Crosta, A.; Moore, J. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone belt terrain. In Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October 1989. [Google Scholar]
- Li, R. Crystallography and Mineralogy; Geology Press: Beijing, China, 2008. [Google Scholar]
- Salisbury, J.; Aria, D. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
Spectral Position (μm) | Range (μm) | Mineralogical Attribution |
---|---|---|
8.39, 8.56, 8.76 | 8–9 | quartz and hornblende |
9.28, 9.50 | 9.2–9.3/9.5–9.7 | feldspar and biotite |
11.62, 11.84 | 11–12 | / |
12.0, 12.20, 12.47, 12.81 | 12.3–12.8 | orthoclase and plagioclase |
13.6, 13.82 | 13.5–13.7/13.8 | plagioclase and biotite |
Component | Eigenvalue | Variance Contribution (%) | Cumulative Contribution (%) |
---|---|---|---|
PC1 | 4.5979 | 0.3537 | 0.3537 |
PC2 | 3.0972 | 0.2382 | 0.5919 |
PC3 | 2.0207 | 0.1554 | 0.7474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Mao, W.; Peng, B.; Zhou, S.; Wu, L. Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis. Minerals 2022, 12, 508. https://doi.org/10.3390/min12050508
Xie B, Mao W, Peng B, Zhou S, Wu L. Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis. Minerals. 2022; 12(5):508. https://doi.org/10.3390/min12050508
Chicago/Turabian StyleXie, Busheng, Wenfei Mao, Boqi Peng, Shengyu Zhou, and Lixin Wu. 2022. "Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis" Minerals 12, no. 5: 508. https://doi.org/10.3390/min12050508
APA StyleXie, B., Mao, W., Peng, B., Zhou, S., & Wu, L. (2022). Thermal-Infrared Spectral Feature Analysis and Spectral Identification of Monzonite Using Feature-Oriented Principal Component Analysis. Minerals, 12(5), 508. https://doi.org/10.3390/min12050508