Study on Microstructure Evolution of Oolitic Hematite during Microwave Fluidization Roasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods and Equipment
2.2.1. Analytical Methods
2.2.2. Roasting Test Method
2.2.3. Simulation Method
3. Results and Discussion
3.1. Simulation Result
3.1.1. Effect of Microwave Time on the Temperature and Stress Distribution of the Model
3.1.2. Effect of Microwave Power on the Temperature and Stress Distribution of the Model
3.2. Microstructure Evolution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Wen, Z.J.; Cen, M.J. Development of technologies for high phosphorus oolitic hematite utilization. Steel Res. Int. 2011, 82, 494–500. [Google Scholar] [CrossRef]
- Yu, Y.; Qi, C. Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 176–181. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Sun, T.-C.; Kou, J.; Li, Y.-L.; Mo, X.-L.; Tang, L.-G. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent. Trans. Nonferrous Met. Soc. China 2012, 22, 2806–2812. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Rao, M.; Zhang, Y.; Jiang, T. Effects of sodium salts on reduction roasting and Fe–P separation of high-phosphorus oolitic hematite ore. Int. J. Miner. Process. 2013, 124, 26–34. [Google Scholar] [CrossRef]
- Gao, J.; Guo, L.; Guo, Z. Separation of P Phase and Fe Phase in High Phosphorus Oolitic Iron Ore by Ultrafine Grinding and Gaseous Reduction in a Rotary Furnace. Met. Mater. Trans. B 2015, 46, 2180–2189. [Google Scholar] [CrossRef]
- Jang, K.-O.; Nunna, V.R.M.; Hapugoda, S.; Nguyen, A.V.; Bruckard, W.J. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Miner. Eng. 2014, 60, 14–22. [Google Scholar] [CrossRef]
- Quast, K. A review on the characterisation and processing of oolitic iron ores. Miner. Eng. 2018, 126, 89–100. [Google Scholar] [CrossRef]
- Dong, Y.B.; Qiang, M.; Duan, Z.Y. Study on the effect of CMS inhibitor on reverse flotation of high phosphorus oolitic hematite in Western Hubei. Min. Metal. Eng. 2011, 31, 44–47. [Google Scholar]
- Li, Y.B.; Gong, W.Q.; Xin, Z.K. Experiment on magnetization roasting and leaching phosphorus removal of a high phosphorus oolitic hematite in Western Hubei. Met. Mine 2010, 5, 64–67. [Google Scholar]
- Li, C.; Sun, H.; Bai, J.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 2010, 174, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Suthers, S.P.; Nunna, V.; Tripathi, A.; Douglas, J.; Hapugoda, S. Experimental study on the beneficiation of low-grade iron ore fines using hydrocyclone desliming, reduction roasting and magnetic separation. Miner. Process. Extr. Met. 2014, 123, 212–227. [Google Scholar] [CrossRef]
- Rath, S.S.; Rao, D.S.; Mishra, B.K. A novel approach for reduction roasting of iron ore slime using cow dung. Int. J. Miner. Process. 2016, 157, 216–226. [Google Scholar] [CrossRef]
- Yu, J.; Han, Y.; Li, Y.; Gao, P. Recent Advances in Magnetization Roasting of Refractory Iron Ores: A Technological Review in the Past Decade. Miner. Process. Extr. Met. Rev. 2019, 41, 349–359. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Han, Y.; Gao, P.; Li, Y. Recycling iron from oolitic hematite via microwave fluidization roasting and magnetic separation. Miner. Eng. 2021, 164, 106851. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.; Han, Y.; Li, Y. Efficient enrichment of low-grade refractory rhodochrosite by preconcentration-neutral suspension roasting-magnetic separation process. Powder Technol. 2020, 361, 529–539. [Google Scholar] [CrossRef]
- Severin, J.; Jund, P. Thermal conductivity calculation in anisotropic crystals by molecular dynamics: Application to α-Fe2O3. J. Chem. Phys. 2017, 146, 054505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Li, L.; Yuan, Z.; Xu, X.; Song, Z.; Zhang, Y.R. Mechanical properties of siderite and hematite from DFT calculation. Miner. Eng. 2020, 146, 106107. [Google Scholar] [CrossRef]
- Et-Tabirou, M.; Dupré, B.; Gleitzer, C. Hematite single crystal reduction into magnetite with CO-CO2. Mater. Trans. B 1988, 19, 311–317. [Google Scholar] [CrossRef]
- Swann, P.R.; Tighe, N.J. High voltage microscopy of the reduction of hematite to magnetite. Mater. Trans. B 1977, 8, 479–487. [Google Scholar] [CrossRef]
- Bahgat, M. Magnetite surface morphology during hematite reduction with CO/CO2 at 1073 K. Mater. Lett. 2007, 61, 339–342. [Google Scholar] [CrossRef]
Component | TFe | FeO | P2O5 | SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Content | 46.70 | 2.43 | 2.34 | 19.17 | 5.71 | 2.45 | 0.30 | 0.63 | 0.18 | 4.25 |
Physical Parameters | Quartz | Hematite | Apatite | Unit |
---|---|---|---|---|
Relative dielectric constant | 4.20 | 25.00 | 5.72 | 1 |
Thermal conductivity | 3.00 | 12.00 | 1.44 | W/mK |
Density | 2650.00 | 4980.00 | 3200.00 | kg/m3 |
Constant pressure heat capacity | 820.00 | 648.00 | 832.00 | J/kg·°C |
Conductivity | 10−12 | 10−2 | 10−11 | S/m |
Relative permeability | 1.00 | 1.05 | 1.00 | 1 |
Young’s modulus | 382.76 | 209.08 | 600.00 | GPa |
Poisson’s ratio | 0.08 | 0.25 | 0.25 | 1 |
Coefficient of thermal expansion | 0.55 | 9.60 | 8.90 | 10−6/°C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Zhao, Y.; Lyu, X.; Gao, W.; Su, H.; Li, C. Study on Microstructure Evolution of Oolitic Hematite during Microwave Fluidization Roasting. Minerals 2022, 12, 507. https://doi.org/10.3390/min12050507
Zhou W, Zhao Y, Lyu X, Gao W, Su H, Li C. Study on Microstructure Evolution of Oolitic Hematite during Microwave Fluidization Roasting. Minerals. 2022; 12(5):507. https://doi.org/10.3390/min12050507
Chicago/Turabian StyleZhou, Wentao, Yongqiang Zhao, Xianjun Lyu, Wenhao Gao, Huili Su, and Chuanming Li. 2022. "Study on Microstructure Evolution of Oolitic Hematite during Microwave Fluidization Roasting" Minerals 12, no. 5: 507. https://doi.org/10.3390/min12050507
APA StyleZhou, W., Zhao, Y., Lyu, X., Gao, W., Su, H., & Li, C. (2022). Study on Microstructure Evolution of Oolitic Hematite during Microwave Fluidization Roasting. Minerals, 12(5), 507. https://doi.org/10.3390/min12050507