Effects of NaOH Content on the Reduction Kinetics of Hematite by Using Suspension Magnetization Roasting Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Apparatus and Procedure
2.2.2. Sample Characterization
2.2.3. Dynamic Analysis Method
3. Results and Discussion
3.1. Influence of the NaOH Content on the Conversion Fractions of Hematite
3.2. Influence of NaOH Content on the Reduction Kinetics of Hematite
3.3. Inhibited Reduction Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lyu, F.; Hu, Y.; Wang, L.; Sun, W. Dealkalization processes of bauxite residue: A comprehensive review. J. Hazard. Mater. 2021, 403, 123671. [Google Scholar] [CrossRef] [PubMed]
- Archambo, M.; Kawatra, S.K. Red mud: Fundamentals and new avenues for utilization. Miner. Process. Extr. Metall. Rev. 2020, 42, 427–450. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.-Q.; Zhu, W.-S.; Huang, J.-B. Environmental impact assessment of China’s primary aluminum based on life cycle assessment. Trans. Nonferrous Met. Soc. China 2019, 29, 1784–1792. [Google Scholar] [CrossRef]
- Lu, G.-Z.; Zhang, T.-A.; Ma, L.-N.; Wang, Y.-X.; Zhang, W.-G.; Zhang, Z.-M.; Wang, L. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy 2019, 188, 248–255. [Google Scholar] [CrossRef]
- Milačič, R.; Zuliani, T.; Ščančar, J. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Sci. Total Environ. 2012, 426, 359–365. [Google Scholar] [CrossRef]
- Alam, S.; Das, S.K.; Rao, B.H. Characterization of coarse fraction of red mud as a civil engineering construction material. J. Clean. Prod. 2017, 168, 679–691. [Google Scholar] [CrossRef]
- Arroyo, F.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Fernández-Pereira, C. Environmental risks and mechanical evaluation of recycling red mud in bricks. Environ. Res. 2020, 186, 109537. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; He, F.; Gao, P.; Yuan, S. Characteristic, hazard and iron recovery technology of red mud—A critical review. J. Hazard. Mater. 2021, 420, 126542. [Google Scholar] [CrossRef]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.; Han, Y.; Li, Y. Efficient enrichment of low-grade refractory rhodochrosite by preconcentration-neutral suspension roasting-magnetic separation process. Powder Technol. 2020, 361, 529–539. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Q.; Sun, Y.; Gao, P.; Han, Y. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resour. Conserv. Recycl. 2021, 172, 105680. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Han, Y.; Li, Y. Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting. J. Clean. Prod. 2020, 268, 122173. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, X.; Gao, P.; Han, Y.; Xu, B. Effective induction of magnetite on suspension magnetization roasting of hematite and reaction kinetics verification. Adv. Powder Technol. 2022, 33, 103593. [Google Scholar] [CrossRef]
- Tang, Z.; Xiao, H.; Sun, Y.; Gao, P.; Zhang, Y. Exploration of hydrogen-based suspension magnetization roasting for refractory iron ore towards a carbon-neutral future: A pilot-scale study. Int. J. Hydrogen Energy 2022, 47, 15074–15083. [Google Scholar] [CrossRef]
- Liu, X.; Gao, P.; Yuan, S.; Lv, Y.; Han, Y. Clean utilization of high-iron red mud by suspension magnetization roasting. Miner. Eng. 2020, 157, 106553. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, X.; Gao, P.; Han, Y. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J. Hazard. Mater. 2020, 394, 122579. [Google Scholar] [CrossRef]
- Zinoveev, D.; Grudinsky, P.; Zakunov, A.; Semenov, A.; Panova, M.; Valeev, D.; Kondratiev, A.; Dyubanov, V.; Petelin, A. Influence of Na2CO3 and K2CO3 Addition on Iron Grain Growth during Carbothermic Reduction of Red Mud. Metals 2019, 9, 1313. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Wang, X.; Li, Y. Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar. Miner. Eng. 2020, 153, 106377. [Google Scholar] [CrossRef]
- Wang, X.; Gao, P.; Liu, J.; Gu, X.; Han, Y. Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of chalcopyrite and molybdenite. J. Mol. Liq. 2021, 326, 115257. [Google Scholar] [CrossRef]
- Liu, J.; Xie, R.; Zhu, Y.; Li, Y.; Liu, C. Flotation behavior and mechanism of styrene phosphonic acid as collector on the flotation separation of fluorite from calcite. J. Mol. Liq. 2021, 326, 115261. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, Q.; Yin, H.; Li, Y. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution. J. Hazard. Mater. 2021, 404, 124067. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, R.; Simmonds, T.; Hayes, P.C. Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres. Metall. Mater. Trans. B 2019, 50, 2612–2622. [Google Scholar] [CrossRef]
- Chithiraputhiran, S.; Neithalath, N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr. Build. Mater. 2013, 45, 233–242. [Google Scholar] [CrossRef]
- Mozammel, M.; Sadrnezhaad, S.K.; Khoshnevisan, A.; Youzbashizadeh, H. Kinetics and reaction mechanism of isothermal oxidation of Iranian ilmenite concentrate powder. J. Therm. Anal. Calorim. 2013, 112, 781–789. [Google Scholar] [CrossRef]
- Gong, D.; Zhou, K.; Li, J.; Peng, C.; Chen, W. Kinetics of Roasting Reaction Between Synthetic Scheelite and Magnesium Chloride. JOM 2019, 71, 2827–2833. [Google Scholar] [CrossRef]
- Fiúza, A.; Silva, A.; Carvalho, G.; de la Fuente, A.V.; Delerue-Matos, C. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron. J. Hazard. Mater. 2010, 175, 1042–1047. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Huang, Q.; Lv, W.; Lv, X.; Bai, C. Effects of Pre-Oxidation on the Kinetics of Iron Leaching from Ilmenite in Hydro-chloric Acid Solution. In Rare Metal Technology 2018; Kim, H., Wesstrom, B., Alam, S., Ouchi, T., Azimi, G., Neelameggham, N.R., Wang, S., Guan, X., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 301–307. [Google Scholar]
Composition | TFe | FeO | SiO2 | Al2O3 | CaO | MgO | P | S |
---|---|---|---|---|---|---|---|---|
Content | 68.75 | 0.45 | 0.48 | 0.081 | 0.28 | 0.22 | 0.025 | 0.004 |
Mechanism Functions | f(α) | G(α) | |
---|---|---|---|
Nucleation model | A1 | 1 − α | −ln(1 − α) |
A2 | 2(1 − α)[−ln(1 − α)]1/2 | [−ln(1 − α)]1/2 | |
A3 | 3(1 − α)[−ln(1 − α)]2/3 | [−ln(1 − α)]1/3 | |
A4 | 4(1 − α)[−ln(1 − α)]3/4 | [−ln(1 − α)]1/4 | |
A3/2 | 3/2(1 − α)[−ln(1 − α)]1/3 | [−ln(1 − α)]2/3 | |
A1/4 | 1/4(1 − α)[−ln(1 − α)]−3 | [−ln(1 − α)]4 | |
A1/3 | 1/3(1 − α)[−ln(1 − α)]−2 | [−ln(1 − α)]3 | |
A1/2 | 1/2(1 − α)[−ln(1 − α)]−1 | [−ln(1 − α)]2 | |
Geometrical contraction models | R1/2 | 1/2(1 − α)−1 | 1 − (1 − α)2 |
R1/3 | 1/3(1 − α)−2 | 1 − (1 − α)3 | |
R1/4 | 1/4(1 − α)−3 | 1 − (1 − α)4 | |
R2 | 2(1 − α)1/2 | 1 − (1 − α)1/2 | |
R3 | 3(1 − α)2/3 | 1 − (1 − α)1/3 | |
R4 | 4(1 − α)3/4 | 1 − (1 − α)1/4 | |
Diffusion models | D1 | 1/2α−1 | α2 |
D2 | [−ln(1 − α)]−1 | A + (1 − α)ln(1 − α) | |
D3 | (1 − α)1/2[1 − (1 − α)1/2] −1 | [1 − (1 − α)]1/2]2 | |
D4 | 3/2(1+α)2/3[(1+α)1/3 − 1] −1 | [(1+α)]1/3 − 1]2 | |
D5 | 3/2(1 − α)4/3[(1 − α)−1/3 − 1] −1 | [(1 − α)]−1/3 − 1]2 | |
D6 | 3/2(1 − α)2/3[1 − (1 − α)−1/3]−1 | [1 − (1 − α)]1/3]2 | |
D7 | 6(1 − α)2/3[1 − (1 − α)−1/3]1/2 | [1 − (1 − α)]1/3]1/2 | |
D8 | 3/2[(1 − α)−1/3 − 1] − 1 | 1 − 2/3α − (1 − α)2/3 | |
Power laws | P4 | 4α3/4 | α1/4 |
P3 | 3α2/3 | α1/3 | |
P2 | 2α1/2 | α1/2 | |
P1 | 1 | α | |
P3/2 | 2/3α−1/2 | α3/2 | |
Reaction-order models | F1 | 1 − α | −ln(1 − α) |
F2 | (1 − α)2 | (1 − α)−1 − 1 | |
F3 | 1/2(1 − α)3 | (1 − α)−2 |
NaOH Additive | G(α) | Temperature (k) | 1/T | Reaction Rate (k/min−1) | lnk | R2 |
---|---|---|---|---|---|---|
0% | G(α) = [−ln(1 − α)]1/3 | 793 | 0.000938 | 0.06435 | −2.74342 | 0.99834 |
833 | 0.000904 | 0.07337 | −2.61224 | 0.99359 | ||
873 | 0.000873 | 0.09599 | −2.34351 | 0.99597 | ||
913 | 0.000843 | 0.10640 | −2.24055 | 0.99541 | ||
1% | G(α) = [−ln(1 − α)]1/3 | 793 | 0.000938 | 0.02330 | −3.7593 | 0.98532 |
833 | 0.000904 | 0.04508 | −3.09932 | 0.98583 | ||
873 | 0.000873 | 0.08082 | −2.51553 | 0.98907 | ||
913 | 0.000843 | 0.10429 | −2.16902 | 0.98568 | ||
2% | G(α) = [−ln(1 − α)]1/3 | 793 | 0.000938 | 0.02052 | −3.88636 | 0.98552 |
833 | 0.000904 | 0.04275 | −3.15239 | 0.99224 | ||
873 | 0.000873 | 0.08178 | −2.50372 | 0.99611 | ||
913 | 0.000843 | 0.10369 | −2.26635 | 0.97408 |
Number | Equation |
---|---|
(9) | 3Fe2O3(s) + CO(g) = 2Fe3O4(s) + CO2(g) |
(10) | Fe3O4(s) + CO(g) = 3FeO(s) + CO2(g) |
(11) | Fe3O4(s) + 4CO(g) = 3Fe(s) + 4CO2(g) |
(12) | FeO(s) + CO(g) = Fe(s) + CO2(g) |
(13) | 2NaOH(s) + Fe2O3(s) = Na2O·Fe2O3(s) + H2O(g) |
(14) | 3Na2O·Fe2O3(s) + CO(g) = 2Fe3O4(s) + 3Na2O(s) + CO2(g) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Li, X.; Wang, X.; Zhang, H.; Li, Y. Effects of NaOH Content on the Reduction Kinetics of Hematite by Using Suspension Magnetization Roasting Technology. Minerals 2022, 12, 1107. https://doi.org/10.3390/min12091107
Yuan S, Li X, Wang X, Zhang H, Li Y. Effects of NaOH Content on the Reduction Kinetics of Hematite by Using Suspension Magnetization Roasting Technology. Minerals. 2022; 12(9):1107. https://doi.org/10.3390/min12091107
Chicago/Turabian StyleYuan, Shuai, Xinyu Li, Xun Wang, Hao Zhang, and Yanjun Li. 2022. "Effects of NaOH Content on the Reduction Kinetics of Hematite by Using Suspension Magnetization Roasting Technology" Minerals 12, no. 9: 1107. https://doi.org/10.3390/min12091107
APA StyleYuan, S., Li, X., Wang, X., Zhang, H., & Li, Y. (2022). Effects of NaOH Content on the Reduction Kinetics of Hematite by Using Suspension Magnetization Roasting Technology. Minerals, 12(9), 1107. https://doi.org/10.3390/min12091107