Crystal Transformation of Sericite during Fluidized Roasting: A Study Combining Experiment and Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods and Equipment
2.3. Analytical Methods
3. Results and Discussion
3.1. Thermal Decomposition Analysis
3.2. Transformation Behaviors of Sericite
3.2.1. Transformation of Chemical Bonds
3.2.2. Phase Transformation
3.2.3. Microstructure Analysis
3.3. DFT Calculation of Sericite Crystal
3.3.1. Crystal Transformation during Dehydroxylation
3.3.2. Analysis of Bond Parameters and Electron Population
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Che, X.; Cui, X.; Zheng, Q.; Wang, L. Selective leaching of vanadium from V-Ti magnetite concentrates by pellet calcification roasting-H2SO4 leaching process. Int. J. Min. Sci. Technol. 2021, 31, 507–513. [Google Scholar] [CrossRef]
- Li, H.-Y.; Wang, C.; Lin, M.; Guo, Y.; Xie, B. Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium-chromium slag. Powder Technol. 2019, 360, 503–508. [Google Scholar] [CrossRef]
- Cai, Z.; Feng, Y.; Li, H.; Zhou, Y. Selective Separation and Extraction of Vanadium(IV) and Manganese(II) from Co-leaching Solution of Roasted Stone Coal and Pyrolusite via Solvent Extraction. Ind. Eng. Chem. Res. 2013, 52, 13768–13776. [Google Scholar] [CrossRef]
- Chen, T.; Li, Q.; Li, Q.; Wu, Z.; Dong, G.; Wan, J. Application of PVC as Novel Roasting Additive in Vanadium Extraction from Stone Coal. Mining, Met. Explor. 2019, 36, 931–939. [Google Scholar] [CrossRef]
- Chen, B.; Bao, S.; Zhang, Y. Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale. Int. J. Min. Sci. Technol. 2021, 31, 1095–1106. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Hu, P. Formation mechanism and control method of the silicate minerals-based coating (SMC) in blank roasting process of vanadium-bearing shale. Colloids Surfaces A: Physicochem. Eng. Asp. 2020, 592, 124535. [Google Scholar] [CrossRef]
- Dong, Y.-B.; Liu, Y.; Lin, H.; Liu, C.-J. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Trans. Nonferrous Met. Soc. China 2019, 29, 849–858. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, Y.; Bao, S. Cleaning method of vanadium precipitation from stripped vanadium solution using oxalic acid. Powder Technol. 2019, 355, 667–674. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Zhang, G.-F.; Feng, Q.-M.; Lu, Y.-P.; Ou, L.-M.; Huang, S.-J. Acid leaching of vanadium from roasted residue of stone coal. Trans. Nonferrous Met. Soc. China 2010, 20, s107–s111. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Zhang, Y.; Song, S.; Bao, S. In-situ investigation on mineral phase transition during roasting of vanadium-bearing stone coal. Adv. Powder Technol. 2017, 28, 1103–1107. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, T.; Chen, T.; Bian, Y.; Bao, S. Pre-concentration of vanadium from stone coal by gravity separation. Int. J. Miner. Process. 2013, 121, 1–5. [Google Scholar] [CrossRef]
- Long, S.; Feng, Q.; Zhang, G.; He, N. Recovery of vanadium from alkaline leaching solution from roasted stone coal. ScienceAsia 2014, 40, 69–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Song, S.; Chen, T.; Bao, S. Behaviors of impurity elements Ca and Fe in vanadium-bearing stone coal during roasting and its control measure. Int. J. Miner. Process. 2016, 148, 100–104. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Liu, T.; Huang, J. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching. JOM 2018, 70, 1972–1976. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Huang, J.; Liu, T.; Xue, N. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO. Minerals 2017, 7, 33. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, K.; Cheng, H.; Zhang, L. Extraction of vanadium from Chinese black shale by roasting using Na2CO3-BaSO4 mixture addition. In Proceedings of the International Conference on Renewable Energy and Environmental Technology, Phuket, Thailand, 21–22 September 2013; pp. 3912–3915. [Google Scholar]
- Zhang, Y.-M.; Bao, S.-X.; Liu, T.; Chen, T.-J.; Huang, J. The technology of extracting vanadium from stone coal in China: History, current status and future prospects. Hydrometallurgy 2011, 109, 116–124. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Wang, X.-W.; Shen, J.-F.; Wu, R.-N. Extraction of vanadium from stone coal by modified salt-roasting process. J. Central South Univ. Technol. 2011, 18, 1940–1944. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.-M.; Liu, T.; Huang, J.; Zhao, J.; Zhang, G.; Liu, J. Comparison of direct acid leaching process and blank roasting acid leaching process in extracting vanadium from stone coal. Int. J. Miner. Process. 2014, 128, 40–47. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Y.; Zhu, Z.; Yin, W.; Asawa, K.; Choi, C.-H.; Drelich, J.W. Contact Line and Adhesion Force of Droplets on Concentric Ring-Textured Hydrophobic Surfaces. Langmuir 2020, 36, 2622–2628. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, Y.; Li, H.; Du, Z. Optimization Mechanism of Additive of Composite Sodium Salts on Vanadium Oxidation of Siliceous Shale. Minerals 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, T.; Zhang, Y.; Huang, J. Effect of CaF2/CaO Composite Additive on Roasting of Vanadium-Bearing Stone Coal and Acid Leaching Kinetics. Minerals 2017, 7, 43. [Google Scholar] [CrossRef]
- Cai, Z.; Feng, Y.; Li, H.; Du, Z.; Liu, X. Co-recovery of manganese from low-grade pyrolusite and vanadium from stone coal using fluidized roasting coupling technology. Hydrometallurgy 2012, 131–132, 40–45. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Sun, Y.; Lv, Y.; Li, Y.; Tang, Z. An Novel Method for Iron Recovery from Iron Ore Tailings with Pre-Concentration Followed by Magnetization Roasting and Magnetic Separation. Miner. Process. Extr. Met. Rev. 2019, 41, 117–129. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Q.; Sun, Y.; Gao, P.; Han, Y. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation. Resour. Conserv. Recycl. 2021, 172, 105680. [Google Scholar] [CrossRef]
- Bai, Z.; Han, Y.; Jin, J.; Sun, Y.; Zhou, Z. Extraction of vanadium from black shale by novel two-step fluidized roasting process. Powder Technol. 2022, 408, 117745. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N.; Shi, Q. Optimal Location of Vanadium in Muscovite and Its Geometrical and Electronic Properties by DFT Calculation. Minerals 2017, 7, 32. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, X.; Han, Y.; Li, Y.; Gao, P. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study. J. Clean. Prod. 2020, 261, 121221. [Google Scholar] [CrossRef]
- Liu, X.; Gao, P.; Yuan, S.; Lv, Y.; Han, Y. Clean utilization of high-iron red mud by suspension magnetization roasting. Miner. Eng. 2020, 157, 106553. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Sun, Y.; Li, Y. Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study. Powder Technol. 2019, 352, 16–24. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N. Removal Process of Structural Oxygen from Tetrahedrons in Muscovite during Acid Leaching of Vanadium-Bearing Shale. Minerals 2018, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Zhang, Y.; Xue, N. Migration and coordination of vanadium separating from black shale involved by fluoride. Sep. Purif. Technol. 2021, 266, 118552. [Google Scholar] [CrossRef]
- Yang, X.L.; Feng, Y.L.; Li, H.R.; Du, Z.W.; Liu, P.W. Effect of preroasting on the preoxidation of vanadium in high-carbon stone coal. Asia-Pacific, J. Chem. Eng. 2018, 13, e2216. [Google Scholar] [CrossRef]
- Liu, L.; Gong, Z.; Wang, Z.; Zhang, H. Study on combustion and emission characteristics of chars from low-temperature and fast pyrolysis of coals with TG-MS. Environ. Eng. Res. 2019, 25, 522–528. [Google Scholar] [CrossRef]
- Zhang, H.; Dou, B.; Zhang, H.; Li, J.; Ruan, C.; Wu, C. Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis. J. Anal. Appl. Pyrolysis 2020, 150, 104888. [Google Scholar] [CrossRef]
- Luo, L.; Liu, J.; Zhang, H.; Ma, J.; Wang, X.; Jiang, X. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal. J. Anal. Appl. Pyrolysis 2017, 128, 64–74. [Google Scholar] [CrossRef]
- Yuan, Y.-Z.; Zhang, Y.-M.; Liu, T.; Chen, T.-J. Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal. Int. J. Miner. Met. Mater. 2015, 22, 476–482. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Liu, T.; Hu, P.; Zheng, Q. Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology. J. Clean. Prod. 2019, 234, 494–502. [Google Scholar] [CrossRef]
- Bárcena, J.L.; Urbina, M.; Rowlands, A.P.; Beneitez, P.; Millán, A.; Calderón, T. Basic Thermoluminescence Properties of Micas: Muscovite, Sericite and Phlogopite. Radiat. Prot. Dosim. 1999, 84, 289–292. [Google Scholar] [CrossRef]
- Xu, X.; Ding, H.; Liang, N.; Wang, Y.; Yan, W. Effects of Heat Treatment on Crystal Structure and Reactivity of Sericite. In Proceedings of the 6th East Asian Symposium on Functional Ion Application Technology/International Forum on Ecological Environment Functional Materials and Industry, Shanghai, China, 24–25 September 2010; p. 113. [Google Scholar]
- Hu, Y.-J.; Zhang, Y.-M.; Bao, S.-X.; Liu, T. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal. Int. J. Miner. Met. Mater. 2012, 19, 893–898. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz. Sep. Purif. Technol. 2021, 264, 118445. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz. J. Mol. Liq. 2021, 336, 116303. [Google Scholar] [CrossRef]
- Yu, C.J.; Choe, S.H.; Jang, Y.M.; Jang, G.H.; Pae, Y.H. First-principles study of organically modified muscovite mica with ammonium (NH) or methylammonium (CHNH) ion. J. Mater. Sci. 2016, 51, 10806–10818. [Google Scholar] [CrossRef]
- Ferraris, G.; Ivaldi, G. Structural features of micas. In Micas: Crystal Chemistry and Metamorphic Petrology; Mineralogical Society of America: Chantilly, VA, USA, 2002; pp. 117–153. [Google Scholar]
- Brigatti, M.F.; Kile, D.E.; Poppi, M. Crystal Structure and Crystal Chemistry of Lithium-Bearing Muscovite-2M1. Can. Miner. 2001, 39, 1171–1180. [Google Scholar] [CrossRef]
- Zanazzi, P.F.; Pavese, A. Behavior of micas at high pressure and high temperature. In Micas: Crystal Chemistry and Metamorphic Petrology; Mineralogical Society of America: Chantilly, VA, USA, 2002; pp. 99–116. [Google Scholar]
- Zheng, Q.; Zhang, Y.; Xue, N. Enhancing Effect of Vanadium Releasing Efficiently from Lattice in Black Shale by Thermal Activation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129773. [Google Scholar] [CrossRef]
- Jin, J.; Miller, J.D.; Dang, L.X. Molecular dynamics simulation and analysis of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. Int. J. Miner. Process. 2014, 128, 55–67. [Google Scholar] [CrossRef]
- Terra, J.; Jiang, M.; Ellis, D.E. Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 2002, 82, 2357–2377. [Google Scholar] [CrossRef]
- Louis-Achille, V.; De Windt, L.; Defranceschi, M. Electronic structure of minerals: The apatite group as a relevant example. Int. J. Quantum Chem. 2000, 77, 991–1006. [Google Scholar] [CrossRef]
Composition | Al2O3 | K2O | SiO2 | Fe2O3 | CaO | MgO | TiO2 |
---|---|---|---|---|---|---|---|
Content (wt%) | 30.82 | 10.54 | 49.25 | 5.21 | 0.14 | 1.30 | 0.70 |
Crystal Planes | Interplanar Spacings/nm | ||||
---|---|---|---|---|---|
Raw Sericite | 700 °C | 850 °C | 900 °C | 950 °C | |
(0 0 2) | 0.9950 | 0.9973 | 1.0041 | 1.0041 | 1.0063 |
(0 0 4) | 0.4982 | 0.4985 | 0.5029 | 0.5029 | 0.5035 |
(1 1 0) | 0.4471 | 0.4505 | 0.4503 | 0.4498 | 0.4501 |
(−1 1 4) | 0.3494 | 0.3500 | 0.3521 | 0.3517 | 0.3520 |
(0 0 6) | 0.3323 | 0.3324 | 0.3355 | 0.3355 | 0.3357 |
(1 1 4) | 0.3202 | 0.3205 | 0.3228 | 0.3227 | 0.3229 |
(0 2 5) | 0.2992 | 0.2995 | 0.3028 | 0.3027 | 0.3031 |
(1 1 5) | 0.2862 | 0.2865 | 0.2885 | 0.2886 | 0.2889 |
(−1 1 6) | 0.2791 | 0.2794 | 0.2814 | 0.2814 | 0.2816 |
(0 0 8) | 0.2493 | 0.2493 | 0.2516 | 0.2517 | 0.2518 |
(2 2 4) | 0.1994 | 0.1994 | 0.2013 | 0.2013 | 0.2014 |
(1 3 9) | 0.1647 | 0.1648 | 0.1666 | 0.1666 | 0.1666 |
Distance/nm | V1-Al1 | Al1-Al2 | Al2-Fe1 | Fe1-Al3 | Al3-Al4 | Al4-V1 |
---|---|---|---|---|---|---|
Before | 3.11 | 3.00 | 2.98 | 3.06 | 3.00 | 3.13 |
After | 3.04 | 2.96 | 3.44 | 2.98 | 2.96 | 3.48 |
Distance/nm | V1-Al1 | V1-Fe2 | Fe2-Al5 | Al5-Fe3 | Fe3-V2 | V2-Al1 |
Before | 3.11 | 2.68 | 2.98 | 3.06 | 2.68 | 3.13 |
After | 3.04 | 2.36 | 3.44 | 2.98 | 2.36 | 3.48 |
Ions | State | s Orbital | p Orbital | d Orbital | Total | Charge/e |
---|---|---|---|---|---|---|
V1 | Before | 2.25 | 6.17 | 3.31 | 11.72 | 1.28 |
After | 2.20 | 6.21 | 3.40 | 11.81 | 1.19 | |
Al1 | Before | 0.50 | 0.81 | - | 1.31 | 1.69 |
After | 0.47 | 0.78 | - | 1.25 | 1.75 | |
Al2 | Before | 0.51 | 0.81 | - | 1.33 | 1.67 |
After | 0.46 | 0.79 | - | 1.25 | 1.75 | |
Fe1 | Before | 0.25 | 0.24 | 6.54 | 7.04 | 0.96 |
After | 0.26 | 0.35 | 6.52 | 7.13 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Han, Y.; Jin, J.; Sun, Y.; Zhang, Q. Crystal Transformation of Sericite during Fluidized Roasting: A Study Combining Experiment and Simulation. Minerals 2022, 12, 1223. https://doi.org/10.3390/min12101223
Bai Z, Han Y, Jin J, Sun Y, Zhang Q. Crystal Transformation of Sericite during Fluidized Roasting: A Study Combining Experiment and Simulation. Minerals. 2022; 12(10):1223. https://doi.org/10.3390/min12101223
Chicago/Turabian StyleBai, Zhe, Yuexin Han, Jianping Jin, Yongsheng Sun, and Qi Zhang. 2022. "Crystal Transformation of Sericite during Fluidized Roasting: A Study Combining Experiment and Simulation" Minerals 12, no. 10: 1223. https://doi.org/10.3390/min12101223
APA StyleBai, Z., Han, Y., Jin, J., Sun, Y., & Zhang, Q. (2022). Crystal Transformation of Sericite during Fluidized Roasting: A Study Combining Experiment and Simulation. Minerals, 12(10), 1223. https://doi.org/10.3390/min12101223