Study on Hydrometallurgical Treatment of Oxide Ores Bearing Zinc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elemental Analysis
2.2. XRD Analysis
2.3. Leaching Rate Calculation
2.4. Modeling of Dynamics
2.5. Leaching Experiments
3. Results and Discussion
3.1. Effects of Various Leaching Conditions
3.1.1. Effect of Leaching Agent
3.1.2. Effect of Leaching Agent Concentration
3.1.3. Effect of Leaching Time
3.1.4. Effect of Leaching Temperature
3.1.5. Effect of L/S Ratio
3.1.6. Effect of Agitation Rate
3.2. Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belogub, E.V.; Novoselov, C.A.; Spiro, B.; Yakovleva, B.A. Mineralogical and s isotopic features of the supergene profile of the zapadno-ozernoe massive sulphide and au-bearing gossan deposit, South Urals. Mineral. Mag. 2016, 67, 339–354. [Google Scholar] [CrossRef]
- Symons, D.T.A.; Lewchuk, M.T.; Boyle, D.R. Pliocene–pleistocene genesis for the Murray brook and heath steele Au–Ag gossan ore deposits, New Brunswick, from paleomagnetism. Can. J. Earth Sci. 2011, 33, 1–11. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreau, M.M.; de Varennes, A.; Macías, F.; Leitão, S. Evaluation of chemical parameters and ecotoxicity of a soil developed on gossan following application of polyacrylates and growth of Spergularia purpurea. Sci. Total Environ. 2013, 461, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Gossan, N.C.; Zhang, F.; Guo, B.; Jin, D.; Yoshitane, H.; Yao, A.; Glossop, N.; Zhang, Y.Q.; Fukada, Y.; Meng, Q.-J. The e3 ubiquitin ligase ube3a is an integral component of the molecular circadian clock through regulating the bmal1 transcription factor. Nucleic Acids Res. 2014, 1048, 5765–5775. [Google Scholar] [CrossRef] [Green Version]
- Dudek, M.; Gossan, N.; Yang, N.; Im, H.-J.; Ruckshanthi, J.P.D.; Yoshitane, H.; Li, X.; Jin, D.; Wang, P.; Boudiffa, M.; et al. The chondrocyte clock gene bmal1 controls cartilage homeostasis and integrity. J. Clin. Investig. 2015, 126, 365–376. [Google Scholar] [CrossRef]
- Gossan, D.P.A.; Magid, A.A.; Kouassi-Yao, P.A.; Behr, J.-B.; Ahibo, A.C.; Djakouré, L.A.; Harakat, D.; Voutquenne-Nazabadioko, L. Glycosidase inhibitors from the roots of Glyphaea brevis. Phytochemistry 2014, 109, 76–83. [Google Scholar] [CrossRef]
- Atapour, H.; Aftabi, A. The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: Implications for exploration and the environment. J. Geochem. Explor. 2007, 93, 47–65. [Google Scholar] [CrossRef]
- Baggio, S.B.; Hartmann, L.A.; Massonne, H.J.; Theye, T.; Antune, L.M. Silica gossan as a prospective guide for amethyst geode deposits in the Ametista do Sul mining district, Paraná volcanic province, southern Brazil. J. Geochem. Explor. 2015, 159, 213–226. [Google Scholar] [CrossRef]
- Safari, V.; Arzpeyma, G.; Rashchi, F.; Mostoufi, N. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica. Int. J. Miner. Process. 2009, 93, 79–83. [Google Scholar] [CrossRef]
- Espiari, S.; Rashchi, F.; Sadrnezhaad, S.K. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 2006, 82, 54–62. [Google Scholar] [CrossRef]
- Qin, W.Q.; Li, W.Z.; Lan, Z.Y.; Qiu, G.Z. Simulated small-scale pilot plant heap leaching of low-grade oxide. Miner. Eng. 2007, 8, 694–700. [Google Scholar] [CrossRef]
- Chen, A.L.; Zhao, Z.W.; Jia, X.J.; Long, S.; Huo, G.S.; Chen, X.Y. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy 2009, 97, 228–232. [Google Scholar] [CrossRef]
- Li, S.L.; Ma, X.M.; Wang, J.C.; Xing, Y.W.; Gui, X.H.; Cao, Y.J. Effect of polyethylene oxide on flotation of molybdenite fines. Miner. Eng. 2020, 146, 106–146. [Google Scholar] [CrossRef]
- Luo, B.; Liu, Q.J.; Deng, J.H.; Yu, L.; Lai, H.; Song, C.; Li, S.M. Characterization of sulfide film on smithsonite surface during sulfidation processing and its response to flotation performance. Powder Technol. 2019, 351, 144–152. [Google Scholar] [CrossRef]
- Lei, C.; Yan, B.; Chen, T.; Xiao, X.M. Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation. J. Clean. Prod. 2017, 1581, 73–80. [Google Scholar] [CrossRef]
- Pluokun, O.O.; Otunniyi, I.O. Chemical conditioning for wet magnetic separation of printed circuit board dust using octyl phenol ethoxylate. Sep. Purif. Technol. 2020, 2401, 116586. [Google Scholar] [CrossRef]
- Gnoinski, J. Skorpion zinc: Optimization and innovation. J. S. Afr. Inst. Min. Metall. 2007, 107, 657–662. [Google Scholar]
- De Wet, J.R.; Singleton, J.D. Development of a viable process for the recovery of zinc from oxide ores. J. S. Afr. Inst. Min. Metall. 2008, 108, 253–259. [Google Scholar]
- Feng, L.Y.; Yang, X.W. Pelletizing and alkaline leaching of powdery lowgrade zinc oxide ores. Hydrometallurgy 2007, 89, 305–310. [Google Scholar] [CrossRef]
- Sole, K.C.; Feather, A.M.; Cole, P.M. Solvent extraction in southern Africa: An update of some recent hydrometallurgical developments. Hydrometallurgy 2005, 78, 52–78. [Google Scholar] [CrossRef]
- Ashraf, M.; Zafar, Z.I.; Ansari, T.M. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy 2015, 80, 286–292. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.T.; Han, Y.X.; Li, Y.J. Efficient enrichment of low grade refractory rhodochrosite by preconcentration-neutral suspension roasting-magnetic separation process. Powder Technol. 2020, 361, 529–539. [Google Scholar] [CrossRef]
- Demir, F.; Dönmez, B.; Çolak, S. Leaching kinetics of magnesite in citric acid solution. J. Chem. Eng. Jpn. 2003, 36, 683–688. [Google Scholar] [CrossRef]
- Laçin, O.; Dönmez, B.; Demir, F. Dissolution kinetics of natural magnesite in acetic acid solutions. Int. J. Miner. Process. 2005, 75, 91–99. [Google Scholar] [CrossRef]
Component | Zn | Fe | SiO2 | Al2O3 | CaO | MgO | S | Pb | Mn | Cd |
---|---|---|---|---|---|---|---|---|---|---|
Content/% | 13 | 40.2 | 5.9 | 4.5 | 0.8 | 0.3 | 0.36 | 0.1 | 0.09 | 0.02 |
Minerals | Mineral Content/% | Zinc Content/% | Zinc Distribution Rate/% |
---|---|---|---|
Siderite bearing zinc | 41.87 | 10.53 | 33.93 |
Smithsonite | 2.58 | 52.06 | 10.33 |
Limonite bearing zinc | 51.93 | 13.85 | 55.35 |
Gangue | 3.62 | 1.40 | 0.39 |
Total | 100.00 | 13.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Huo, X.; Li, Z.; Ma, S. Study on Hydrometallurgical Treatment of Oxide Ores Bearing Zinc. Minerals 2022, 12, 1264. https://doi.org/10.3390/min12101264
Yang J, Huo X, Li Z, Ma S. Study on Hydrometallurgical Treatment of Oxide Ores Bearing Zinc. Minerals. 2022; 12(10):1264. https://doi.org/10.3390/min12101264
Chicago/Turabian StyleYang, Jinlin, Xingnan Huo, Zongyu Li, and Shaojian Ma. 2022. "Study on Hydrometallurgical Treatment of Oxide Ores Bearing Zinc" Minerals 12, no. 10: 1264. https://doi.org/10.3390/min12101264
APA StyleYang, J., Huo, X., Li, Z., & Ma, S. (2022). Study on Hydrometallurgical Treatment of Oxide Ores Bearing Zinc. Minerals, 12(10), 1264. https://doi.org/10.3390/min12101264