The Hidden Magmatic Chamber from the Ponte Nova Mafic–Ultramafic Alkaline Massif, SE Brazil: Clues from Clinopyroxene and Olivine Antecrysts
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Clinopyroxene and Olivine Paragenesis
4.2. Mineral Chemistry
4.2.1. Major Elements
4.2.2. Trace Elements
5. Discussion
5.1. Antecrysts in the Ponte Nova Massif
5.2. Estimation of Intensive Parameters (P-T) for High-Mg Diopside Antecrysts of PN
5.3. The Evolution of Hidden Chamber from PN
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakuyama, M. Magma mixing and magma plumbing systems in island arcs. Bull. Volcanol. 1984, 47, 685–703. [Google Scholar] [CrossRef]
- Marsh, B.D. Dynamics of magmatic systems. Elements 2006, 2, 287–292. [Google Scholar] [CrossRef]
- Jerram, D.A.; Martin, V.M. Understanding crystal populations and their significance through the magma plumbing system. In Dynamics of Crustal Magma Transfer, Storage and Differentiation; Annen, C., Zellmer, G.F., Eds.; Geological Society of London: London, UK, 2008; pp. 133–148. [Google Scholar]
- Ubide, T.; Arranz, E.; Lago, M.; Galé, C.; Larrea, P. The influence of crystal settling on the compositional zoning of a thin lamprophyre sill: A multi-method approach. Lithos 2012, 132–133, 37–49. [Google Scholar] [CrossRef]
- Ubide, T.; Galé, C.; Larrea, P.; Arranz, E.; Lago, M. Antecrysts and their effect on rock compositions: The Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE Spain). Lithos 2014, 206–207, 214–233. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, eaag3055. [Google Scholar] [CrossRef] [Green Version]
- Burchardt, S. Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Elsevier: Uppsala, Sweden, 2018. [Google Scholar]
- Jerram, D.A.; Bryan, S.E. Plumbing systems of shallow level intrusive complexes. In Physical Geology of Shallow Magmatic Systems; Breitkreuz, C., Rocchi, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 39–60. [Google Scholar]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Davidson, J.P.; Morgan, D.J.; Charlier, B.L. Isotopic microsampling of magmatic rocks. Elements 2008, 3, 253–259. [Google Scholar] [CrossRef]
- Ubide, T.; McKenna, C.A.; Chew, D.M.; Kamber, B.S. High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem. Geol. 2015, 409, 157–168. [Google Scholar] [CrossRef]
- Vernon, R.H.; Etheridge, M.A.; Wall, V.J. Shape and microstructure of microgranitoid enclaves; indicators of magma mingling and flow. Lithos 1988, 22, 1–11. [Google Scholar] [CrossRef]
- Barbarin, B.; Didier, J. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans. R. Soc. Edinb. 1992, 83, 145–153. [Google Scholar]
- Clarke, D.B. Assimilation of xenocrysts in granitic magmas: Principles, processes, proxies, and problems. Can. Mineral. 2007, 45, 5–30. [Google Scholar] [CrossRef]
- Brandriss, M.E.; Mason, S.; Winsor, K. Rhythmic layering formed by deposition of plagioclase phenocrysts from influxes of porphyritic magma in the Cuillin Centre, Isle of Skye. J. Petrol. 2014, 55, 1479–1510. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, R.A. Mafic replenishments into floored silicic magma chambers. Am. Mineral. 2016, 101, 297–310. [Google Scholar] [CrossRef]
- Franciosi, L.; D’Antonio, M.; Fedele, L.; Guarino, V.; Tassinari, C.C.G.; de Gennaro, R.; Cucciniello, C. Petrogenesis of the Solanas gabbro-granodiorite intrusion, Sàrrabus (southeastern Sardinia, Italy): Implications for Late Variscan magmatism. Int. J. Earth Sci. 2019, 108, 989–1012. [Google Scholar] [CrossRef]
- Hibbard, M.J. Textural anatomy of twelve magma-mixed granitoid systems. In Enclaves and Granite Petrology; Didier, J., Barbarin, B., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 431–444. [Google Scholar]
- Hibbard, M.J. Petrography to Petrogenesis; Prentice Hall: Hoboken, NJ, USA, 1995. [Google Scholar]
- Vernon, R.H. Crystallization and hybridism in microgranular enclave magmas: Microstructural evidence. J. Geophys. Res. 1990, 95, 17849–17859. [Google Scholar] [CrossRef]
- Sarkar, C.; Storey, C.D.; Hawkesworth, C.J. Using perovskite to determine the pre-shallow level contamination magma characteristics of kimberlite. Chem. Geol. 2014, 363, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Dobosi, G.; Fodor, R.V. Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos 1992, 28, 133–150. [Google Scholar] [CrossRef]
- Rock, N.M.S.; Gwalani, L.G.; Griffin, B.J. Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Alkaline Province, Gujarat, India. 2. Complexly zoned clinopyroxene phenocrysts. Mineral. Petrol. 1994, 51, 113–135. [Google Scholar] [CrossRef]
- Simonetti, A.; Shore, M.; Bell, K. Diopside phenocrysts from nephelinite lavas, Napak Volcano, eastern Uganda; evidence for magma mixing. Can. Mineral. 1996, 34, 411–421. [Google Scholar]
- Valente, S.C. Geochemical and Isotopic Constraints on the Petrogenesis of the Cretaceous Dykes of Rio de Janeiro, Brazil. Ph.D. Thesis, The Queen’s University of Belfast, Belfast, Ireland, 1997. [Google Scholar]
- Kahl, M.; Chakraborty, S.; Costa, F.; Pompilio, M. Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: An example from Mt. Etna. Earth Planet. Sci. Lett. 2011, 308, 11–22. [Google Scholar] [CrossRef]
- Janckovics, M.É.; Taracsák, Z.; Dobosi, G.; Embey-Isztin, A.; Batki, A.; Harangi, S.; Hauzenberger, C.A. Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics. Lithos 2016, 262, 120–134. [Google Scholar] [CrossRef]
- Gernon, T.M.; Upton, B.G.J.; Ugra, R.; Yücel, C.; Taylor, R.N.; Elliott, H. Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland). Lithos 2016, 264, 70–85. [Google Scholar] [CrossRef]
- Ubide, T.; Gale, C.; Arranz, E.; Lago, M.; Larrea, P. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral-melt partitioning. Lithos 2014, 184, 225–242. [Google Scholar] [CrossRef]
- Batki, A.; Pál-Molnár, E.; Jankovics, M.É.; Kerr, A.C.; Kiss, B.; Markl, G.; Heincz, A.; Harangi, S. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania. Lithos 2018, 300, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Wada, K.; Wood, C.P. Mixed magmas, mush chambers and eruption triggers: Evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J. Petrol. 2002, 43, 2279–2303. [Google Scholar] [CrossRef] [Green Version]
- Tepley, F.J.; Davidson, J.P. Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion, Scotland. Contrib. Mineral. Petrol. 2003, 145, 628–641. [Google Scholar] [CrossRef]
- Miller, J.S.; Matzel, J.E.; Miller, C.F.; Burgess, S.D.; Miller, R.B. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 2007, 167, 282–299. [Google Scholar] [CrossRef]
- Alves, A.; Janasi, V.A.; Pereira, G.S.; Prado, F.A.; Munoz, P.R.M. Unravelling the hidden evidences of magma mixing processes via combination of in situ Sr isotopes and trace elements analyses on plagioclase crystals. Lithos 2021, 404–405, 106435. [Google Scholar] [CrossRef]
- Yuan, Q.; Namur, O.; Fischer, L.A.; Roberts, R.J.; Lü, X.; Charlier, B. Pulses of plagioclase-laden magmas and stratigraphic evolution in the Upper Zone of the Bushveld Complex, South Africa. J. Petrol. 2017, 58, 1619–1644. [Google Scholar] [CrossRef]
- Cawthorn, R.G. Identification of Anorthite-enriched Plagioclase Antecrysts in the Bushveld Complex, South Africa. J. Petrol. 2019, 60, 1109–1118. [Google Scholar] [CrossRef]
- Lopes, J.; Azzone, R.G.; Chmyz, L.; Guarino, V.; Lima, N.M. Mafic macrocrysts of ultrabasic alkaline dikes from the Mantiqueira Range, SE, Brazil: Tracers of a complex plumbing system. Brazil. J. Geol. 2020, 50, e20200010. [Google Scholar]
- Azzone, R.G.; Ruberti, E.; Lopes, J.C.S.; Gomes, C.B.; Enrich, G.E.R.; Hollanda, M.H.B.M.; Tassinari, C.C.G. Upper Cretaceous weakly to strongly silica-undersaturated alkaline dike series of the Mantiqueira Range, Serra do Mar alkaline province: Crustal assimilation processes and mantle source signatures. Brazil. J. Geol. 2018, 48, 373–390. [Google Scholar] [CrossRef]
- Azzone, R.G.; Ruberti, E.; Enrich, G.E.R.; Gomes, C.B. Geologia e geocronologia do maciço alcalino máfico-ultramáfico Ponte Nova (SP-MG). Geol. USP Sér. Cient. 2009, 9, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.B.; Comin-Chiaramonti, P. An introduction to the alkaline and alkaline-carbonatitic magmatism in and around the Paraná-Basin. In Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform; Comin-Chiaramonti, P., Gomes, C.B., Eds.; Edusp/Fapesp: São Paulo, Brazil, 2005; pp. 21–30. [Google Scholar]
- Azzone, R.G.; Munoz, P.R.M.; Enrich, G.E.R.; Alves, A.; Ruberti, E.; Gomes, C.B. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic–ultramafic massif, SE Brazil. Lithos 2016, 260, 58–75. [Google Scholar] [CrossRef]
- Morbidelli, L.; Gomes, C.B.; Beccaluva, L.; Brotzu, P.; Conte, A.M.; Ruberti, E.; Traversa, G. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil. Earth Sci. Rev. 1995, 39, 135–168. [Google Scholar] [CrossRef]
- Gomes, C.B.; Comin-Chiaramonti, P. Magmatismo Alcalino Continental da Região Meridional da Plataforma Brasileira; Edusp/Fapesp: São Paulo, Brazil, 2017. [Google Scholar]
- Ulbrich, H.H.G.J.; Gomes, C.B. Alkaline rocks from continental Brazil. Earth Sci. Rev. 1981, 17, 135–154. [Google Scholar] [CrossRef]
- Schobbenhaus, C.; Gonçalves, J.H.; Santos, J.O.S.; Abram, M.B.; Leão Neto, R.; Matos, G.M.M.; Vidotti, R.M.; Ramos, M.A.B.; Jesus, J.D.A. Carta Geológica do Brasil ao Milionésimo—Folha SF-23; Companhia de Pesquisa de Recursos Minerais, CPRM: Brasília, Brazil, 2004. [Google Scholar]
- Almeida, F.F.M. Relações tectônicas das rochas alcalinas mesozóicas da região meridional da plataforma sul-americana. Rev. Bras. Geociênc. 1983, 13, 39–158. [Google Scholar] [CrossRef]
- Vinagre, R.; Trouw, R.A.J.; Mendes, J.C.; Duffles, P.; Peternel, R.; Matos, G. New Evidence of a Magmatic Arc in the Southern Brasília Belt, Brazil: The Serra da Água Limpa Batholith (Socorro-Guaxupé Nappe). J. S. Am. Earth Sci. 2014, 54, 120–139. [Google Scholar] [CrossRef]
- Azzone, R.G.; Chmyz, L.; Guarino, V.; Alves, A.; Gomes, C.B.; Ruberti, E. Isotopic clues tracking the open-system evolution of the Ponte Nova mafic-ultramafic alkaline massif, SE Brazil: The contribution of Pb isotopes. Geochemistry 2020, 80, 125648. [Google Scholar] [CrossRef]
- Bastin, G.F.; Van Loo, F.J.J.; Heijligers, H.J.M. Evaluation and use of gaussian Φ(ρz) curves in quantitative electron probe microanalysis: A new optimization. X-ray Spectrom. 1984, 13, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman Scientific & Technical: London, UK, 1992. [Google Scholar]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.; Ulbrich, H.H.G.J.; Gomes, C.B.; Martins, L. Methodology for the determination of trace and minor elements in minerals and fused rock glasses with laser ablation associated with quadrupole inductively coupled plasma mass spectrometry (LA-Q-ICP-MS). Am. J. Analyt. Chem. 2014, 5, 701–721. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.L. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences; Sylvester, P., Ed.; Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2008; pp. 308–311. [Google Scholar]
- Xing, C.M.; Wang, C.Y. Periodic mixing of magmas recorded by oscillatory zoning of the clinopyroxene macrocrysts from an ultrapotassic lamprophyre dyke. J. Petrol. 2020, 61, egaa103. [Google Scholar] [CrossRef]
- Cao, G.; Xue, H.; Tong, Y. Complex magmatic processes recorded by clinopyroxene phenocrysts in a magmatic plumbing system: A case study of mafic volcanic rocks from the Laiyang Basin, southeastern North China Craton. Lithos 2022, 416-417, 106673. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Costa, F.; Dohmen, R.; Chakraborty, S. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 2008, 69, 545–594. [Google Scholar] [CrossRef]
- Müller, T.; Dohmen, R.; Becker, H.W.; Ter Heege, J.H.; Chakraborty, S. Fe–Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Mineral. Petrol. 2013, 166, 1563–1576. [Google Scholar] [CrossRef]
- Petrone, C.M.; Braschi, E.; Francalanci, L.; Casalini, M.; Tommasini, S. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano. Earth Planet. Sci. Lett. 2018, 492, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Ganne, J.; Bachmann, O.; Feng, X. Deep into magma plumbing systems: Interrogating the crystal cargo of volcanic deposits. Geology 2018, 46, 415–418. [Google Scholar] [CrossRef]
- Ubide, T.; Kamber, B.S. Volcanic crystals as time capsules of eruption history. Nat Commun. 2018, 9, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites: II. New thermobarometers, and the practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353e1378. [Google Scholar] [CrossRef]
- Sharma, A.; Sahoo, S.; Rao, N.C.; Belyatsky, B.; Dhote, P.; Lehmann, B. Petrology and Nd–Sr isotopic composition of alkaline lamprophyres from the Early to Late Cretaceous Mundwara Alkaline Complex, NW India: Evidence of crystal fractionation, accumulation and corrosion in a complex magma chamber plumbing system. Geol. Soc. Spec. Publ. 2022, 513, 413–442. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Dungan, M.A.; Blanchard, D.P.; Long, P.E. Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 228 N on the Mid-Atlantic Ridge. Tectonophysics 1979, 55, 35–61. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Mollo, S.; Blundy, J.D.; Iezzi, G.; Scarlato, P.; Langone, A. The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib. Mineral. Petrol. 2013, 166, 1633–1654. [Google Scholar] [CrossRef]
- Neave, D.A.; Putirka, K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineral. 2017, 102, 777–794. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.; Johnson, M.; Kinzler, R.; Longhi, J.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Neave, D.A.; Bali, E.; Guðfinnsson, G.H.; Halldórsson, S.A.; Kahl, M.; Schmidt, A.S.; Holtz, F. Clinopyroxene–liquid equilibria and geothermobarometry in natural and experimental tholeiites: The 2014–2015 Holuhraun eruption, Iceland. J. Petrol. 2019, 60, 1653–1680. [Google Scholar] [CrossRef]
- Putirka, K. Clinopyroxene+liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 1999, 135, 151–163. [Google Scholar] [CrossRef]
- Yagi, K.; Onuma, K. The Join CaMgSi2O6-CaTiAl2O6 and its bearing on the Titanaugites. J. Fac. Sci. Hokkaido Univ. 1967, 13, 463–483. [Google Scholar]
- Gibb, F.G. The zoned clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol. 1973, 14, 203–230. [Google Scholar] [CrossRef]
- Wass, S.Y. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 1979, 12, 115–132. [Google Scholar] [CrossRef]
- Thy, P. High and low pressure phase equilibria of a mildly alkalic lava from the 1965 Surtsey eruption: Experimental results. Lithos 1991, 26, 223–243. [Google Scholar] [CrossRef]
- Adam, J.; Green, T.H. The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem. Geol. 1994, 117, 219–233. [Google Scholar] [CrossRef]
- Nimis, P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib. Mineral. Petrol. 1999, 135, 62–74. [Google Scholar] [CrossRef]
- Brotzu, P.; Melluso, L.; Bennio, L.; Gomes, C.B.; Lustrino, M.; Morbidelli, L.; Morra, V.; Ruberti, E.; Tassinari, C.C.G.; D’Antonio, M. Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. J. S. Am. Earth Sci. 2007, 24, 93–115. [Google Scholar] [CrossRef]
- Guarino, V.; Azzone, R.G.; Brotzu, P.; Gomes, C.B.; Melluso, L.; Morbidelli, L.; Ruberti, E.; Tassinari, C.C.G.; Brilli, M. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil. Mineral. Petrol. 2012, 104, 43–61. [Google Scholar] [CrossRef]
- Guarino, V.; de’ Gennaro, R.; Melluso, L.; Ruberti, E.; Azzone, R.G. The transition from miaskitic to agpaitic rocks as marked by the accessory mineral assemblages, in the Passa Quatro alkaline complex (southeastern Brazil). Can. Mineral. 2019, 57, 339–361. [Google Scholar] [CrossRef]
- Guarino, V.; Lustrino, M.; Zanetti, A.; Tassinari, C.C.G.; Ruberti, E.; de’ Gennaro, R.; Melluso, L. Mineralogy and geochemistry of a giant magma reservoir: The Late Cretaceous Poços de Caldas potassic alkaline complex (SE Brazil). Lithos 2021, 398–399, 106330. [Google Scholar] [CrossRef]
- Hackspacher, P.C.; Ribeiro, L.F.B.; Ribeiro, M.C.S.; Fetter, A.H.; Hadler, J.C.; Tello, C.E.S.; Dantas, E.L. Consolidation and break-up of the South American platform in southeastern Brazil: Tectonothermal and denudation histories. Gondwana Res. 2004, 7, 91–101. [Google Scholar] [CrossRef]
- Tello-Saenz, C.A.; Hackspacher, P.C.; Hadler, N.J.C.; Iunes, P.J.; Guedes, O.S.; Ribeiro, L.F.B.; Paulo, S.R. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: Association with the opening of the south Atlantic Ocean. J. S. Am. Earth Sci. 2003, 15, 765–774. [Google Scholar] [CrossRef]
- Hiruma, S.T.; Riccomini, C.; Modenesi-Gauttieri, M.C.; Hackspacher, P.C.; Hadler Neto, J.C.; Franco-Magalhães, A.O.B. Denudation history of the Bocaina Plateau, Serra do Mar, southeastern Brazil: Relationships to Gondwana breakup and passive margin development. Gondwana Res. 2010, 18, 674–687. [Google Scholar] [CrossRef]
- Marks, M.; Halama, R.; Wenzel, T.; Markl, G. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: Implications for mineral–melt trace-element partitioning. Chem. Geol. 2004, 211, 185–215. [Google Scholar] [CrossRef]
- Prowatke, S.; Klemme, S. Trace element partitioning between apatite and silicate melts. Geochim. Cosmochim. Acta 2006, 70, 4513–4527. [Google Scholar] [CrossRef]
- Mollo, S.; Forni, F.; Bachmann, O.; Blundy, J.D.; De Astis, G.; Scarlato, P. Trace element partitioning between clinopyroxene and trachy-phonolitic melts: A case study from the Campanian Ignimbrite (Campi Flegrei, Italy). Lithos 2016, 252, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Ladenburger, S.; Marks, M.A.; Upton, B.; Hill, P.; Wenzel, T.; Markl, G. Compositional variation of apatite from rift-related alkaline igneous rocks of the Gardar Province, South Greenland. Am. Mineral. 2016, 101, 612–626. [Google Scholar] [CrossRef]
- Baudouin, C.; France, L.; Boulanger, M.; Dalou, C.; Devidal, J.L. Trace element partitioning between clinopyroxene and alkaline magmas: Parametrization and role of M1 site on HREE enrichment in clinopyroxenes. Contrib. Mineral. Petrol. 2020, 175, 42. [Google Scholar] [CrossRef]
- Jackson, M.D.; Blundy, J.; Sparks, R.S.J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 2018, 564, 405–409. [Google Scholar] [CrossRef] [Green Version]
Intrusion | Lithologies | C.I. | Early Magmatic Phases (Primocrysts) | Clinopyroxene in the Most Primitive Samples | Olivines in the Most Primitive Samples | ||
---|---|---|---|---|---|---|---|
Crystal Types | Zoning and Textures | Crystal Types | Zoning and Textures | ||||
CI (lower zone) | (cumulatic) Ol clinopyroxenites, Ol-bearing clinopyroxenites, Ol melagabbros, Ol-bearing melagabbros | 97–70 | Di, Ti-Aug, Ol, ±Ti-Mgt, ±Ap, ±Pl | (1) zoned cumulus crystals | Completely to partially resorbed diopside cores (1) with dissolution surfaces (including gulf texture) and (growth) mantled by titanaugite and (2) with pervasive resorption and replaced by intercumulus minerals (Ti-aug, bt, krs, mgt, pl), (3) normal step zoning, (4) oscillatory zoning with coarse banding (reverse zonings included) | (1) cumulus crystals, (2) inclusions in diopside cores, (3) partially or totally involved by titanaugite rims | (1) normal progressive zoning, (2) normal step zoning |
WI (lower zone) | (cumulatic) Ol melagabbros, Ol-bearing melagabbros, Ol-bearing clinopyroxenites | 99–75 | Di, Ti-Aug, Ol, ±Ti-Mgt, ±Ap, ±Pl | (1) zoned cumulus crystals | (1) cumulus crystals, (2) minor inclusions in few diopside cores, (3) partially involved by titanaugite rims | (1) normal progressive zoning | |
NI (lower zone) | (cumulatic) Ol melamonzogabbros, Ol-bearing melamonzogabbros | 76–67 | Di, Ti-Aug, Ol, ±Ti-Mgt, ±Ap, ±Pl | (1) zoned cumulus crystals | (1) cumulus crystals, (2) minor inclusions in few diopside cores, (3) partially involved by titanaugite rims | (1) normal progressive zoning, (2) normal step zoning (dirty cores, clean rims) | |
EI (lower zone) | (seriate to macrocrystic) Nph monzodiorites, Nph-bearing monzodiorites | 58–51 | Di, Ol, Pl, ±Ap | (1) zoned macrocrysts | Completely to partially resorbed diopside cores (1) with dissolution surfaces and mantled by titanaugite and (2) with pervasive resorption and replaced by intercumulus minerals (Ti-aug, bt, krs, mgt, pl), (3) normal step zoning, (4) sieve texture | (1) rounded macrocrysts | (1) normal step zoning, (2) resorption, with biotite coronas |
SSI | (macrocrystic) Nph-bearing melamonzogabbros | 67 | Di, Ti-Aug, Ol | (1) zoned macrocrysts | Completely to partially resorbed diopside cores (1) with dissolution surfaces and mantled by titanaugite and (2) with pervasive resorption and replaced by intercumulus minerals (Ti-aug, bt, krs, mgt, pl), (3) normal step zoning, (4) included in cumulatic clinopyroxenitic autoliths | (1) macrocrysts (2) included in clinopyroxenitic cumulate autoliths | (1) normal progressive zoning |
CI | WI | NI | EI | SSI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relict Cores | Mantling and Rims | Relict Cores | Relict Cores | Mantling and Rims | Relict Cores | Mantling and Rims | Relict Cores | Mantling and Rims | ||||||||||
n = 22 | n = 10 | n = 6 | n = 10 | n = 13 | n = 31 | n = 10 | n = 9 | n = 12 | ||||||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |
Mg# | 0.85 | 0.89 | 0.75 | 0.84 | 0.85 | 0.87 | 0.85 | 0.90 | 0.76 | 0.81 | 0.80 | 0.85 | 0.69 | 0.84 | 0.84 | 0.86 | 0.74 | 0.78 |
Ti | 3409 | 6553 | 8471 | 19016 | 5693 | 7920 | 3291 | 6092 | 9461 | 16630 | 7165 | 13828 | 6648 | 16519 | 5026 | 8476 | 10810 | 22386 |
Cr | 1017 | 8257 | 32 | 2105 | 1473 | 3779 | 1932 | 9310 | 54 | 2311 | 483 | 3355 | 18 | 1361 | 2388 | 6090 | 18 | 1366 |
Ni | 214 | 280 | 121 | 276 | 217 | 256 | 237 | 304 | 142 | 226 | 192 | 274 | 32 | 123 | 193 | 271 | 62 | 221 |
Co | 27.1 | 38.2 | 34.8 | 48.3 | 32.5 | 38.3 | 30.1 | 37.2 | 36.7 | 49.2 | 34.4 | 45.8 | 26.6 | 39.2 | 34.3 | 37.0 | 32.0 | 44.4 |
Sr | 75.5 | 109 | 116 | 159 | 107 | 131 | 77.3 | 94.4 | 106 | 186 | 84.3 | 106 | 98.5 | 218 | 100 | 127 | 126 | 255 |
Y | 4.29 | 10.0 | 14.2 | 62.1 | 5.99 | 8.36 | 4.18 | 6.76 | 13.5 | 82.3 | 7.82 | 11.8 | 11.4 | 74.5 | 8.49 | 10.5 | 11.9 | 138 |
Zr | 9.6 | 34.2 | 65.8 | 325 | 14.4 | 23.8 | 9.12 | 23.2 | 62.6 | 639 | 25.5 | 55.7 | 63.1 | 374 | 16.7 | 34.4 | 59.3 | 1091 |
Hf | 0.46 | 1.66 | 2.23 | 11.0 | 0.85 | 1.31 | 0.32 | 1.04 | 2.58 | 15.9 | 1.27 | 3.02 | 3.70 | 11.6 | 0.96 | 1.74 | 3.20 | 37.5 |
Zn | 14.6 | 24.4 | 38.4 | 64.6 | 18.8 | 24.2 | 17.4 | 22.6 | 39.2 | 63.8 | 18.2 | 25.8 | 22.7 | 82.5 | 20.9 | 24.2 | 29.5 | 92.0 |
V | 108 | 203 | 340 | 537 | 146 | 193 | 120 | 188 | 350 | 544 | 223 | 335 | 197 | 317 | 171 | 238 | 293 | 573 |
Sc | 54.5 | 84.6 | 47.1 | 98.7 | 69.1 | 85.3 | 46.2 | 78.9 | 31.1 | 81.4 | 73.2 | 93.4 | 40.5 | 108 | 65.1 | 83.7 | 51.7 | 116 |
La | 1.82 | 3.10 | 5.53 | 33.3 | 1.87 | 2.46 | 1.27 | 2.20 | 4.25 | 55.3 | 2.08 | 3.32 | 3.22 | 51.6 | 2.23 | 3.31 | 4.65 | 80.9 |
Ce | 5.28 | 11.6 | 19.2 | 127 | 7.60 | 10.5 | 5.40 | 8.58 | 19.9 | 200 | 7.48 | 12.5 | 11.6 | 154 | 8.76 | 13.4 | 21.5 | 278 |
Pr | 1.03 | 2.07 | 3.25 | 20.1 | 1.55 | 2.09 | 0.92 | 1.63 | 3.15 | 27.7 | 1.43 | 2.42 | 2.26 | 22.4 | 1.73 | 2.61 | 4.01 | 47.2 |
Nd | 5.29 | 10.7 | 15.7 | 86.0 | 9.05 | 12.3 | 4.94 | 8.44 | 16.2 | 108 | 8.25 | 13.9 | 12.8 | 94.7 | 9.73 | 14.7 | 20.5 | 236 |
Sm | 1.35 | 3.18 | 3.88 | 20.7 | 2.50 | 3.65 | 1.45 | 2.50 | 3.79 | 23.3 | 2.52 | 4.00 | 4.19 | 23.0 | 2.92 | 3.96 | 5.33 | 50.8 |
Eu | 0.52 | 1.19 | 1.36 | 5.07 | 0.89 | 1.17 | 0.48 | 0.85 | 1.40 | 5.16 | 0.79 | 1.42 | 1.33 | 5.58 | 0.93 | 1.31 | 1.78 | 7.52 |
Gd | 1.28 | 3.46 | 3.64 | 18.1 | 2.37 | 3.29 | 1.22 | 2.25 | 4.64 | 25.0 | 2.56 | 4.13 | 4.44 | 22.1 | 2.73 | 3.79 | 4.37 | 42.1 |
Tb | 0.21 | 0.45 | 0.69 | 2.69 | 0.29 | 0.38 | 0.16 | 0.30 | 0.64 | 3.60 | 0.34 | 0.60 | 0.56 | 2.72 | 0.37 | 0.53 | 0.63 | 6.53 |
Dy | 0.95 | 2.56 | 3.58 | 13.7 | 1.47 | 2.25 | 1.01 | 1.61 | 2.95 | 20.2 | 1.88 | 3.16 | 2.85 | 15.5 | 1.97 | 2.82 | 3.16 | 39.7 |
Ho | 0.16 | 0.38 | 0.507 | 2.40 | 0.23 | 0.38 | 0.18 | 0.30 | 0.49 | 3.37 | 0.32 | 0.51 | 0.46 | 2.80 | 0.31 | 0.45 | 0.56 | 5.43 |
Er | 0.36 | 0.89 | 1.16 | 6.17 | 0.45 | 0.72 | 0.43 | 0.62 | 1.19 | 9.41 | 0.70 | 1.13 | 1.02 | 6.50 | 0.71 | 1.07 | 1.12 | 13.3 |
Tm | 0.03 | 0.14 | 0.13 | 0.76 | 0.05 | 0.11 | 0.05 | 0.07 | 0.10 | 1.19 | 0.07 | 0.15 | 0.14 | 0.89 | 0.08 | 0.13 | 0.12 | 1.80 |
Yb | 0.18 | 0.54 | 1.01 | 4.13 | 0.21 | 0.45 | 0.25 | 0.44 | 0.54 | 5.93 | 0.43 | 0.61 | 0.62 | 8.26 | 0.40 | 0.69 | 0.77 | 9.25 |
Lu | 0.03 | 0.09 | 0.05 | 0.66 | 0.03 | 0.07 | 0.03 | 0.06 | 0.07 | 0.75 | 0.05 | 0.09 | 0.09 | 0.87 | 0.04 | 0.09 | 0.09 | 1.49 |
ΣREE | 19.9 | 39.7 | 59.7 | 341 | 29.3 | 39.3 | 18.1 | 29.9 | 62.4 | 487 | 29.4 | 47.9 | 45.6 | 408 | 33.0 | 48.2 | 68.5 | 821 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzone, R.G.; Cetina Tarazona, L.M.; Ambrosio, M.R.; Guarino, V.; Chmyz, L.; Lima, N.M.; Ruberti, E. The Hidden Magmatic Chamber from the Ponte Nova Mafic–Ultramafic Alkaline Massif, SE Brazil: Clues from Clinopyroxene and Olivine Antecrysts. Minerals 2022, 12, 775. https://doi.org/10.3390/min12060775
Azzone RG, Cetina Tarazona LM, Ambrosio MR, Guarino V, Chmyz L, Lima NM, Ruberti E. The Hidden Magmatic Chamber from the Ponte Nova Mafic–Ultramafic Alkaline Massif, SE Brazil: Clues from Clinopyroxene and Olivine Antecrysts. Minerals. 2022; 12(6):775. https://doi.org/10.3390/min12060775
Chicago/Turabian StyleAzzone, Rogério Guitarrari, Lina Maria Cetina Tarazona, Mariana Robertti Ambrosio, Vincenza Guarino, Luanna Chmyz, Nicholas Machado Lima, and Excelso Ruberti. 2022. "The Hidden Magmatic Chamber from the Ponte Nova Mafic–Ultramafic Alkaline Massif, SE Brazil: Clues from Clinopyroxene and Olivine Antecrysts" Minerals 12, no. 6: 775. https://doi.org/10.3390/min12060775
APA StyleAzzone, R. G., Cetina Tarazona, L. M., Ambrosio, M. R., Guarino, V., Chmyz, L., Lima, N. M., & Ruberti, E. (2022). The Hidden Magmatic Chamber from the Ponte Nova Mafic–Ultramafic Alkaline Massif, SE Brazil: Clues from Clinopyroxene and Olivine Antecrysts. Minerals, 12(6), 775. https://doi.org/10.3390/min12060775