Verification and Application of Sequence Stratigraphy to Reservoir Characterization of Horn River Basin, Canada
Abstract
:1. Introduction
2. Geological Overview
3. Materials and Methods
3.1. Data
3.2. Analytical Method
4. Results
4.1. Lithofacies Description and Mineral Components
4.2. Sequence Stratigraphic Interpretation of Horn River Formation Succession
4.3. Structure Map of Sequence and Petrophysical Modeling
5. Discussion
5.1. Key Stratigraphic Surfaces of the Horn River Formation
5.2. Porosity, Permeability, and TOC
5.3. Importance of Paleo Redox Condition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, B.S.; Macquaker, J.H.S.; Taylor, K.G. Mudstone (“shale”) depositional and diagenetic processes: Implications for seismic analyses of source-rock reservoirs. Interpret.-J. Sub. 2013, 1, B7–B26. [Google Scholar] [CrossRef]
- Glaser, K.S.; Miller, C.K.; Johnson, G.M.; Toelle, B.; Kleinberg, R.L.; Miller, P.; Pennington, W.D. Seeking the sweet spot: Reservoir and completion quality in organic shales. Oilfield Rev. 2014, 25, 16–29. [Google Scholar]
- Tyson, R.V. Sequence-stratigraphical interpretation of organic facies variations in marine siliciclastic systems: General principles and application to the onshore Kimmeridge Clay Formation, UK. Geol. Soc. Lond. Spec. Publ. 1996, 103, 75–96. [Google Scholar] [CrossRef]
- Macquaker, J.H.; Taylor, K.G.; Gawthorpe, R.L. High-resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. J. Sediment. Res. 2007, 77, 324–339. [Google Scholar] [CrossRef] [Green Version]
- Slatt, R.M.; Abousleiman, Y. Merging sequence stratigraphy and geomechanics for unconventional gas shales. Lead Edge 2011, 30, 274–282. [Google Scholar] [CrossRef]
- Slatt, R.M.; Rodriguez, N.D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence? J. Nat. Gas Sci. Eng. 2012, 8, 68–84. [Google Scholar] [CrossRef]
- Dong, T.; Harris, N.B.; Ayranci, K.; Twemlow, C.E.; Nassichuk, B.R. Porosity characteristics of the Devonian Horn River shale, Canada: Insights from lithofacies classification and shale composition. Int. J. Coal Geol. 2015, 141, 74–90. [Google Scholar] [CrossRef]
- Hulsey, K. Lithofacies characterization and sequence stratigraphic framework of some gas-bearing shales within the Horn River Basin and Cordova Embayment. In Proceedings of the 2011 CSPG CSEG CWLS Convention, Norman, OK, USA, 9–11 May 2011. [Google Scholar]
- Morrow, D.W.; Zhao, M.W.; Stasiuk, L.D. The gas-bearing Devonian Presquile Dolomite of the Cordova embayment region of British Columbia, Canada: Dolomitization and the stratioraphic template. AAPG Bull. 2002, 86, 1609–1638. [Google Scholar]
- Potma, K.; Jonk, R.; Davie, M.; Austin, N. Integrated Geological, Petrophysical and Geophysical Characterisation of a World Class Shale Gas Play, Horn River Basin, British Columbia, Canada. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2013. [Google Scholar]
- Dong, T. Geochemical, Petrophysical and Geomechanical Properties of Stratigraphic Sequences in Horn River Shale, Middle and Upper Devonian, Northeastern British Columbia, Canada. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2016. [Google Scholar]
- Ayranci, K.; Harris, N.B.; Dong, T. High resolution sequence stratigraphic reconstruction of mud-dominated systems below storm wave base; A case study from the Middle to Upper Devonian Horn River Group, British Columbia, Canada. Sediment. Geol. 2018, 373, 239–253. [Google Scholar] [CrossRef]
- Catuneanu, O.; Galloway, W.E.; Kendall, C.G.S.; Miall, A.D.; Posamentier, H.W.; Strasser, A.; Tucker, M.E. Sequence Stratigraphy: Methodology and Nomenclature. Newsl. Stratigr. 2011, 44, 173–245. [Google Scholar] [CrossRef] [Green Version]
- Posamentier, H.; Jervey, M.T.; Vail, P. Eustatic controls on clastic deposition I—Conceptual framework. In Sea-Level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Eds.; The Society of Economic Paleontologists and Mineralogists (SEPM): Tulsa, Oklahoma, 1988; Volume 42. [Google Scholar]
- Grammer, G.M.; Harris, P.M.M.; Eberli, G.P. Integration of outcrop and modern analogs in reservoir modeling: Overview with examples from the Bahamas. In Integration of Outcrop and Modern Analogs in Reservoir Modeling; Grammer, G.M., Harris, P.M.M., Eberli, G.P., Eds.; AAPG: Tulsa, Oklahoma, 2004; Volume 80, pp. 1–22. [Google Scholar]
- Hemmesch, N.T.; Harris, N.B.; Mnich, C.A.; Selby, D. A sequence-stratigraphic framework for the Upper Devonian Woodford Shale, Permian Basin, west Texas. AAPG Bull. 2014, 98, 23–47. [Google Scholar] [CrossRef] [Green Version]
- Oldale, H.; Munday, R. Devonian Beaverhill Lake Group of the Western Canada Sedimentary Basin: Geological Atlas of the Western Canada Sedimentary Basin. In Geological Atlas of the Western Canada Sedimentary Basin; Mossop, G.D., Shetsen, I., Eds.; Canadian Society of Petroleum Geologists and Alberta Research Council: Calgary, AB, Canada, 1994; pp. 149–163. [Google Scholar]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Fraser, T.A.; Hutchison, M.P. Lithogeochemical characterization of the Middle-Upper Devonian Road River Group and Canol and Imperial formations on Trail River, east Richardson Mountains, Yukon: Age constraints and a depositional model for fine-grained strata in the Lower Paleozoic Richardson trough. Can. J. Earth Sci. 2017, 54, 731–765. [Google Scholar] [CrossRef]
- McLean, R.A.; Klapper, G. Biostratigraphic correlation of the Frasnian (Upper Devonian) of western Canada, based on conodonts and rugose corals. Bull. Can. Petrol. Geol. 1998, 46, 515–563. [Google Scholar]
- Mossop, G.D.; Shetsen, I. Geological Atlas of the Western Canada Sedimentary Basin; Canadian Society of Petroleum Geologists and Alberta Research Council: Calgary, AB, Canada, 1994. [Google Scholar]
- Ferri, F.; Hickin, A.S.; Huntley, D.H. Besa River formation, western Liard Basin, British Columbia (NTS 094N): Geochemistry and regional correlations. Geosci. Rep. 2011, 2011, 1–18. [Google Scholar]
- McPhail, S.; Walsh, W.; Lee, C.; Monahan, P. Shale units of the Horn River Formation, Horn River Basin and Cordova Embayment, northeastern British Columbia. In Proceedings of the Canadian Society of Petroleum Geologists and Canadian Well Logging Society Convention, the Petroleum Geology Open File, Calgary, AB, Canada, 12–15 May 2018; p. 14. [Google Scholar]
- Hong, S.K.; Shinn, Y.J.; Choi, J.; Lee, H.S. Estimation of original kerogen type and hydrogen index using inorganic geochemical proxies: Implications for assessing shale gas potential in the Devonian Horn River Formation of western Canada. AAPG Bull. 2018, 102, 2075–2099. [Google Scholar] [CrossRef]
- Rexer, T.F.; Mathia, E.J.; Aplin, A.C.; Thomas, K.M. High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens. Energy Fuels 2014, 28, 2886–2901. [Google Scholar] [CrossRef] [Green Version]
- Passey, Q.R.; Creaney, S.; Kulla, J.B.; Moretti, F.J.; Stroud, J.D. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bull. 1990, 74, 1777–1794. [Google Scholar] [CrossRef]
- Schmoker, J.W.; Hester, T.C. Organic-Carbon in Bakken Formation, United-States Portion of Williston Basin. AAPG Bull. 1983, 67, 2165–2174. [Google Scholar] [CrossRef]
- Feiyu, W.; Jing, G.; Weiping, F.; Linyan, B. Evolution of overmature marine shale porosity and implication to the free gas volume. Pet. Explor. Dev. 2013, 40, 819–824. [Google Scholar] [CrossRef]
- Lewis, R.; Ingraham, D.; Pearcy, M.; Williamson, J.; Sawyer, W.; Frantz, J. New evaluation techniques for gas shale reservoirs. In Proceedings of the Reservoir Symposium, Schlumberger Houston, TX, USA, 22–26 February 2004; pp. 1–11. [Google Scholar]
- Catuneanu, O. Sequence stratigraphy: Guidelines for a standard methodology. In Stratigraphy & Timescales; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1–57. [Google Scholar]
- Mitchum, R., Jr.; Vail, P.R.; Thompson, S., III. Seismic stratigraphy and global changes of sea level: Part 2: The depositional sequence as a basic unit for stratigraphic analysis: Section 2. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration; AAPG: Tulsa, Oklahoma, 1977. [Google Scholar]
- Lindemann, R.H.; Yochelson, E.L. Styliolines from the Onondaga Limestone (Middle Devonian) of New-York. J. Paleontol. 1984, 58, 1251–1259. [Google Scholar]
- Straeten, C.A.V.; Brett, C.E.; Sageman, B.B. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 54–73. [Google Scholar] [CrossRef]
- Mitra, A.; Warrington, D.; Sommer, A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals. In Proceedings of the SPE Western Regional Meeting, Anaheim, CA, USA, 27–29 May 2010. [Google Scholar]
- O’Brien, N.R.; Slatt, R.M. Argillaceous Rock Atlas; Springer: New York, NY, USA, 2012. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.S.; Schieber, J.; Demko, T.M. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Pyrcz, M.J.; Deutsch, C.V. Geostatistical Reservoir Modeling; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Bristow, C.; Williamson, B. Spectral gamma ray logs: Core to log calibration, facies analysis and correlation problems in the Southern North Sea. Geol. Soc. Lond. Spec. Publ. 1998, 136, 1–7. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.C.; Jiang, S.; Li, J.Q.; Guo, T.L.; Luo, C.; Xing, F.C. Sequence stratigraphy and its application in marine shale gas exploration: A case study of the Lower Silurian Longmaxi Formation in the Jiaoshiba shale gas field and its adjacent area in southeast Sichuan Basin, SW China. J. Nat. Gas Sci Eng. 2015, 27, 410–423. [Google Scholar] [CrossRef]
- Davies, S.; Elliott, T. Spectral gamma ray characterization of high resolution sequence stratigraphy: Examples from Upper Carboniferous fluvio-deltaic systems, County Clare, Ireland. Geol. Soc. Lond. Spec. Publ. 1996, 104, 25–35. [Google Scholar] [CrossRef]
- Hesselbo, S.P. Spectral gamma-ray logs in relation to clay mineralogy and sequence stratigraphy, cenozoic of the atlantic margin, offshore new jersey1. In Proceedings of the Ocean Drilling Program: Scientific Results, v.150, 1996; pp. 411–422. [Google Scholar]
- Hampson, G.J.; Davies, W.; Davies, S.J.; Howell, J.A.; Adamson, K.R. Use of spectral gamma-ray data to refine subsurface fluvial stratigraphy: Late Cretaceous strata in the Book Cliffs, Utah, USA. J. Geol. Soc. Lond. 2005, 162, 603–621. [Google Scholar] [CrossRef]
- Fertl, W.H.; Rieke, H. Gamma ray spectral evaluation techniques identify fractured shale reservoirs and source-rock characteristics. J. Pet. Tech. 1980, 32, 2053–2062. [Google Scholar] [CrossRef]
- Herron, S.L. In Situ Evaluation of Potential Source Rocks by Wireline Logs: Chapter 13: Geochemical Methods and Exploration. In Source and Migration Processes and Evaluation Techniques; Merrill, R.K., Ed.; AAPG Treatise of Petroleum Geology, Handbook of Petroleum Geology; AAPG: Tulsa, Oklahoma, 1991; pp. 127–134. [Google Scholar]
- Leeder, M.; Raiswell, R.; Albiatty, H.; Mcmahon, A.; Hardman, M. Carboniferous Stratigraphy, Sedimentation and Correlation of Well 48/3-3 in the Southern North Sea Basin: Integrated Use of Palynology, Natural Gamma Sonic Logs and Carbon Sulfur Geochemistry. J. Geol. Soc. Lond. 1990, 147, 287–300. [Google Scholar] [CrossRef]
- Luning, S.; Kolonic, S. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: Applicability and limitations. J. Petrol. Geol. 2003, 26, 153–174. [Google Scholar] [CrossRef]
- Carrasco, J.; Trillo, E.M. Sweet Spot Geological Techniques for Detecting Oil Field Exploration Locations. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Quito, Ecuador, 18 November 2015. [Google Scholar]
- Brito, R. Geological Characterization and Sequence Stratigraphic Framework of the Brown Shale, Central Sumatra Basin, Indonesia: Implications as an Unconventional Resource. Unpublished Master’s Thesis, University of Oklahoma, Norman, OK, USA, 2014. [Google Scholar]
- Parada, T.; Jose, E. Unconventional Gas Shale Assessment of La Luna Formation, in the Central and South Areas of the Middle Magdalena Valley Basin, Colombia. Master’s Thesis, University of Oklahoma, Norman, OK, USA, 2013. [Google Scholar]
- Passey, Q.R.; Bohacs, K.; Esch, W.L.; Klimentidis, R.; Sinha, S. From oil-prone source rock to gas-producing shale reservoir–geologic and petrophysical characterization of unconventional shale-gas reservoirs. In Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijng, China, 8–10 June 2010; pp. 1–29. [Google Scholar]
- Wignall, P.B. Model for Transgressive Black Shales. Geology 1991, 19, 167–170. [Google Scholar] [CrossRef]
- Adams, J.A.; Weaver, C.E. Thorium-to-uranium ratios as indicators of sedimentary processes: Example of concept of geochemical facies. AAPG Bull. 1958, 42, 387–430. [Google Scholar]
- Demaison, G.J.; Moore, G.T. Anoxic Environments and Oil Source Bed Genesis. AAPG Bull. 1980, 64, 1179–1209. [Google Scholar] [CrossRef]
- Stein, R. Organic-Carbon and Sedimentation-Rate—Further Evidence for Anoxic Deep-Water Conditions in the Cenomanian Turonian Atlantic-Ocean. Mar. Geol. 1986, 72, 199–209. [Google Scholar] [CrossRef]
- Pasley, M.A.; Gregory, W.A.; Hart, G.F. Organic matter variations in transgressive and regressive shales. Org. Geochem. 1991, 17, 483–509. [Google Scholar] [CrossRef]
- Stephen, C.; Passey, Q.R. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bull. 1993, 77, 386–401. [Google Scholar] [CrossRef]
- Myers, K.; Bristow, C. Detailed sedimentology and gamma-ray log characteristics of a Namurian deltaic succession II: Gamma-ray logging. Geol. Soc. Lond. Spec. Publ. 1989, 41, 81–88. [Google Scholar] [CrossRef]
- Rider, M.H.; Kennedy, M. The Geological Interpretation of Well Logs, 3rd ed.; Rider-French Consulting Ltd.: Rogart, The Scotland, 2011; p. 432. [Google Scholar]
- Wignall, P.B.; Twitchett, R.J. Oceanic anoxia and the end Permian mass extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, S.M.; Thompson, J.A.; Goodnight, S.A.; Robl, T.L. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 125–154. [Google Scholar] [CrossRef]
QFM Contents (wt%) | ||||||
---|---|---|---|---|---|---|
Facies | FLSM | HSM | LSM | LMM | AM | CM |
min | 27.3 | 37.0 | 55.2 | 34.0 | 37.3 | 1.7 |
max | 88.7 | 87.6 | 84.6 | 70.0 | 45.7 | 37.4 |
avg | 64.5 | 72.2 | 59.9 | 43.1 | 42.7 | 22.5 |
Carbonate Contents(wt%) | ||||||
Facies | FLSM | HSM | LSM | LMM | AM | CM |
min | 0.6 | 0.9 | 8.1 | 0.6 | 0.6 | 51.7 |
max | 38.6 | 48.6 | 24.8 | 54.4 | 12.6 | 85.1 |
avg | 4.2 | 6.6 | 10.9 | 22.1 | 4.0 | 71.9 |
Clay Contents(wt%) | ||||||
Facies | FLSM | HSM | LSM | LMM | AM | CM |
min | 65.2 | 8.3 | 15.4 | 55.4 | 45.1 | 0.3 |
max | 3.5 | 43.8 | 33.9 | 13.4 | 62.7 | 10.9 |
avg | 31.4 | 21.3 | 29.1 | 34.8 | 53.3 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, J.; Choi, J.; Yoon, S.H.; Rhee, C.W. Verification and Application of Sequence Stratigraphy to Reservoir Characterization of Horn River Basin, Canada. Minerals 2022, 12, 776. https://doi.org/10.3390/min12060776
Woo J, Choi J, Yoon SH, Rhee CW. Verification and Application of Sequence Stratigraphy to Reservoir Characterization of Horn River Basin, Canada. Minerals. 2022; 12(6):776. https://doi.org/10.3390/min12060776
Chicago/Turabian StyleWoo, Juhwan, Jiyoung Choi, Seok Hoon Yoon, and Chul Woo Rhee. 2022. "Verification and Application of Sequence Stratigraphy to Reservoir Characterization of Horn River Basin, Canada" Minerals 12, no. 6: 776. https://doi.org/10.3390/min12060776
APA StyleWoo, J., Choi, J., Yoon, S. H., & Rhee, C. W. (2022). Verification and Application of Sequence Stratigraphy to Reservoir Characterization of Horn River Basin, Canada. Minerals, 12(6), 776. https://doi.org/10.3390/min12060776