Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. SCA Treatment
2.2.2. Fabrication of the QP–EP Composites
2.2.3. Characterization
2.2.4. Estimation of Interfacial Energy
2.2.5. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Surface Modification of QP with Single and Dual SCAs
3.2. Dispersion and Performance of QP–EP Composites
3.3. Dispersion Mechanism
3.3.1. Aggregation Reduction of QP
3.3.2. Dispersion Model–QP in EP Matrix
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dong, R.; Wang, L.; Zhu, J. A novel SiO2–GO/acrylic resin nanocomposite: Fabrication, characterization and properties. Appl. Phys. A 2019, 125, 551. [Google Scholar] [CrossRef]
- Zhang, Z.; Ge, X.; Xing, R. Effects of different silane coupling agents on structure and properties of starch–chitosan–kaolin composites. J. Appl. Polym. Sci. 2019, 136, 48050. [Google Scholar] [CrossRef]
- Cheng, B.; Zhao, L.; Yu, J.; Zhao, X. Facile fabrication of SiO2/Al2O3 composite microspheres with a simple electrostatic attraction strategy. Mater. Res. Bull. 2008, 43, 714–722. [Google Scholar] [CrossRef]
- Baller, J.; Becker, N.; Ziehmer, M.; Thomassey, M.; Zielinski, B.; Muller, U.; Sanctuary, R. Interactions between silica nanoparticles and an epoxy resin before and during network formation. Polymer 2009, 50, 3211–3219. [Google Scholar] [CrossRef]
- Xing, J.; Deng, B.; Liu, Q. Effects if graphene nanoplatelets on the performance of polyphenylene sulfide composites produced by melt intercalation. High Perform. Polym. 2018, 30, 519–526. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride filler. Compos. Part B Eng. 2013, 51, 140–147. [Google Scholar] [CrossRef]
- Smolka, M.G.; Wagenknecht, U.; Massadeh, S. The effect of silane-coated slag mineral on the mechanical and dynamic mechanical properties of unsaturated polyester composite materials. J. Adhes. Sci. Technol. 2020, 34, 1609–1627. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.G.; Kim, S.; Kim, S.S. PDMS-silica composite membranes with silane coupling for propylene separation. J. Membr. Sci. 2009, 344, 211–218. [Google Scholar] [CrossRef]
- Li, S.H.; Lin, M.M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010, 1, 5214. [Google Scholar] [CrossRef]
- Saba, N.; Tahir, P.M.; Jawaid, M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymer 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Ruan, W.H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A. review. Mater. Sci. Technol. 2006, 22, 787–796. [Google Scholar] [CrossRef]
- Azizah, A.B.; Rozman, H.D.; Azniwati, A.A.; Tay, G.S. The effect of filler loading and silane treatment on kenaf core reinforced polyurethane composites: Mechanical and thermal properties. J. Polym. Environ. 2020, 28, 517–531. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites: A review. Process Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Iijima, M.; Tsukada, M.; Kamiya, H. Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone. J. Colloid Interface Sci. 2007, 307, 418–424. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Song, J.; Dai, Z.D.; Li, J.Y.; Zhao, H.C.; Wang, L.P. Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite, High Perform. Polymers 2019, 31, 116–123. [Google Scholar] [CrossRef]
- Shokoohi, S.; Arefazer, A.; Khosrokhavar, R. Silane Coupling Agents in Polymer-based Reinforced Composites: A Review. J. Reinf. Plast. Compos. 2008, 27, 473–485. [Google Scholar] [CrossRef]
- Werner, R.; Krysztafkiewicz, A.; Jesionowski, T.; Jeczalik, J. Silane-modified sodium-aluminium silicates-fillers used in polyurethane elastomers. J. Adhes. Sci. Technol. 2012, 15, 1711–1724. [Google Scholar] [CrossRef]
- Jesionowski, T.; Krysztafkiewicz, A. Silicas modified with amino-and mercaptosilanes-fillers of urethane elastomers. Compos Interface 2012, 8, 243–248. [Google Scholar] [CrossRef]
- Hewitt, N. Compounding Precipitated Silica in Elastomers: Theory and Practice; William Andrew: Norwich, NY, USA, 2007. [Google Scholar]
- Muhamad, M.S.; Salim, M.R.; Lau, W.J. Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane. RSC Adv. 2015, 5, 58644–58654. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.F.; Gao, T.T.; Xu, W.; Wang, X.C.; Yang, Q.S.; Liu, X.G. Preparation of crosslinked polysiloxane/SiO2 nanocomposite via in-situ condensation and its surface modification on cotton fabrics. Appl. Surf. Sci. 2016, 371, 281–288. [Google Scholar] [CrossRef]
- Yu, S.; Oh, K.H.; Hwang, J.Y.; Hong, S.H. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites. Compos. Part B Eng. 2019, 163, 511–521. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, T.; Peng, C.; Wu, Z.J. Effect of different silane coupling agents on cryogenic properties of silica-reinforced epoxy composites. J. Index. Metr. 2016, 30, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Madani, M. The effect of the coupling agents KH550 and KH570 on the nanostructure and interfacial interaction of zinc oxide/chiral poly(amide–imide) nanocomposites containing L-leucine amino acid moieties. J. Mater. Sci. 2014, 49, 5112–5118. [Google Scholar] [CrossRef]
- Mori, T.; Okada, Y.; Kamiya, H. Effect of surface modification of silica particles on interaction forces and dispersibility in suspension. Adv. Powder Technol. 2016, 27, 830–838. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, J. Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions. Appl. Surf. Sci. 2018, 444, 345–354. [Google Scholar] [CrossRef]
- Mao, Z.; Sun, H.; Zhang, J. Selective distribution of SrTiO3 in co-continuous composites: An effective method to improve the dielectric and mechanical properties. Compos. Pt. A Appl. Sci. Manuf. 2021, 143, 106312. [Google Scholar] [CrossRef]
- Emami, F.S.; Puddu, V.; Berry, R.J.; Varshney, V.; Patwardhan, S.V.; Perry, C.C.; Heinz, H. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 2016, 26, 2647–2658. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.; Robertson, S.; Spenley, N.; Miller, S.; Todd, S. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xu, G.; Chang, W.; Wang, H. Fabrication of microsphere-like nano-MoO2 modified with silane coupling agent KH550. Mater. Res. Express 2019, 6, 115087–115094. [Google Scholar] [CrossRef]
- Wie, J.; Kim, M.; Kim, J. Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents. Appl. Surf. Sci. 2020, 529, 147091–147099. [Google Scholar] [CrossRef]
- Lin, P.; Pu, L.; Luan, M. Study on surface modification of natural power quartz by silane coupling agent KH-560. J. Heilongjiang Inst. Technol. 2012, 2, 9–11. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Y.; Sun, C.; Li, Y.; Han, Y. Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface. Miner. Eng. 2015, 77, 86–92. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Liu, C.; Soraya, D.; Li, C.; Li, H. Investigations on the synergistic effect of combined NaOl/SPA collector in ilmenite flotation. Colloid. Surf. A Physicochem. Eng. Asp. 2021, 628, 127267. [Google Scholar] [CrossRef]
- Wu, W.; Chen, J.Q.Y. Influence of the kinds and structure of silane coupling agent polymer grafting modification of the ultrafine silicon dioxide surface. J. Chin. Ceram. Soc. 2004, 5, 570–575. [Google Scholar] [CrossRef]
- Li, X.; Cao, Z.; Zhang, Z.; Dang, H. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 2006, 252, 7856–7861. [Google Scholar] [CrossRef]
- Tran, L.; Fuentes, C.; Dupont-Gillain, C.; van Vuure, A.; Verpoest, I. Understanding the interfacial compatibility and adhesion of natural coirfibre thermoplastic composites. Compos. Sci. Technol. 2013, 80, 23–30. [Google Scholar] [CrossRef]
- Rzeczkowski, P.; Krause, B.; Potschke, P. Characterization of Highly Filler PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications. Polymers 2019, 11, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Wang, J.; Zhang, B.; Guo, B.; Yu, J.; Guo, Z. Improved electrical conductivity of polymer/carbon black composites by simultaneous dispersion and interaction-induced network assembly. Compos. Sci. Technol. 2019, 179, 106–114. [Google Scholar] [CrossRef]
- Xiao, C.; Li, D.; Zeng, D.; Lang, F.; Lin, Y. A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization. Polym. Bull. 2021, 78, 863–883. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Xue, Y.; Xue, Z.; Liu, H.; Xie, X.; Mai, Y. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos. Sci. Technol. 2016, 128, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Tang, Y.; Ye, Y.; Xue, Z.; Xue, Y.; Xie, X.; Mai, Y. High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos. Sci. Technol. 2014, 105, 80–85. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, C.; Wen, Y.; Xue, Z.; Zhou, X.; Shi, D.; Hu, G.; Xie, X. Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Compos. Sci. Technol. 2021, 209, 108760. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, P.; Li, G.; Wen, J.; Wang, T.; Lu, D.; Sun, R.; Wong, C. Study on the effects of interfacial interaction on the rheological and thermal performance of silica nanoparticles reinforced epoxy nanocomposites. Compos. Part B 2017, 116, 388–397. [Google Scholar] [CrossRef]
- Rueda, M.; Auscher, M.; Fulchiron, R.; Périé, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and applications of highly filled polymers: A review of current understanding. Prog. Polym. Sci. 2017, 66, 22–53. [Google Scholar] [CrossRef]
- Mishra, D.; Dehury, J.; Rout, L.; Satapathy, A. The effect of particle size, mixing conditions and agglomerates on thermal conductivity of BN-polyester and multi-sized BN-hybrid composites for use in micro-electronics. Mater. Today Proc. 2020, 26, 3187–3192. [Google Scholar] [CrossRef]
- Wu, W.; Cong, S. Silica and diatomite fillers modified fluorine rubber composites treated by silane-coupling agents. J. Vinyl Addit. Technol. 2019, 26, 55–61. [Google Scholar] [CrossRef]
- Wei, B.; Chang, Q.; Bao, C.; Dai, L.; Zhang, G. Surface modification of filter medium particles with silane coupling agent KH550. Colloid. Surf. A Physicochem. Eng. Asp. 2013, 434, 276–280. [Google Scholar] [CrossRef]
- Wang, L.; Tang, C.; Wang, X.; Zheng, W. Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2 cite. AIP Adv. 2019, 9, 125134. [Google Scholar] [CrossRef] [Green Version]
- Vallar, S.; Houivet, D.; el Fallah, J.; Kervadec, D.; Haussonne, J.M. Oxide slurries stability and powders dispersion: Optimization with zeta potential and rheological measurements. J. Eur. Ceram. Soc. 1999, 19, 1017–1021. [Google Scholar] [CrossRef]
Sample Name | D10/μm | D50/μm | D97/μm |
---|---|---|---|
Pristine QP | 2.06 | 5.25 | 16.92 |
QP-SPIS | 1.96 | 4.93 | 16.45 |
QP-APTES | 1.73 | 4.62 | 16.31 |
QP-dual SCAs | 1.59 | 4.48 | 15.92 |
Sample | Contact Angle (°) | Surface Energy (70 °C, mJ/m2) | Interfacial Energy (mJ/m2) | |||
---|---|---|---|---|---|---|
H2O | CH2I2 | γD | γP | γ | ||
EP QP APTES SPIS Dual SCAs | 109.00 27.25 38.60 27.25 53.50 | 83.00 42.50 36.50 22.50 33.50 | 10.12 18.43 21.07 24.05 23.32 | 0.52 25.15 19.29 21.46 11.98 | 10.64 43.58 40.36 45.51 35.30 | - 26.06 21.64 25.64 15.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Ma, L.; Ren, Z.; Xie, E.; Wang, Z.; Xie, L.; Gao, H.; Zhou, X.; Wu, J. Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement. Minerals 2022, 12, 784. https://doi.org/10.3390/min12070784
Li P, Ma L, Ren Z, Xie E, Wang Z, Xie L, Gao H, Zhou X, Wu J. Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement. Minerals. 2022; 12(7):784. https://doi.org/10.3390/min12070784
Chicago/Turabian StyleLi, Peiyue, Liyun Ma, Zijie Ren, Enjun Xie, Zengzi Wang, Liusha Xie, Huimin Gao, Xinjun Zhou, and Jianxin Wu. 2022. "Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement" Minerals 12, no. 7: 784. https://doi.org/10.3390/min12070784
APA StyleLi, P., Ma, L., Ren, Z., Xie, E., Wang, Z., Xie, L., Gao, H., Zhou, X., & Wu, J. (2022). Application of Dual Silane Coupling Agent-Assisted Surface-Modified Quartz Powder in Epoxy Matrix for Performance Enhancement. Minerals, 12(7), 784. https://doi.org/10.3390/min12070784