Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation
Abstract
:1. Introduction
2. Regional Geology
3. Geology of the Boziguoer Large-Scale Deposit
Number | BZ-Pcl-1-1 | BZ-Pcl-1-2 | BZ-Pcl-1-3 | BZ-Pcl-1-4 | BZ-Pcl-1-5 | BZ-Pcl-1-6 | BZ-Pcl-1-7 | BZ-Pcl-1-8 | BZ-Pcl-1-9 | BZ-Pcl-1-10 | BZ-Pcl-1-11 |
Rock | Alkalic granite facies | ||||||||||
F | 2.40 | 2.46 | 2.20 | 2.17 | 2.17 | 2.42 | 2.40 | 2.30 | 2.28 | 1.88 | 2.06 |
Na2O | 7.26 | 6.80 | 6.24 | 6.86 | 6.91 | 7.50 | 6.91 | 6.38 | 6.44 | 4.48 | 5.97 |
Ta2O5 | 3.27 | 3.69 | 3.82 | 3.81 | 3.68 | 3.94 | 3.90 | 2.07 | 3.53 | 3.10 | 3.05 |
SiO2 | 0 | 0 | 0 | 0 | 0.06 | 0 | 0 | 0 | 0 | 1.19 | 0 |
Nb2O5 | 60.2 | 59.1 | 58.8 | 58.3 | 59.0 | 58.5 | 58.2 | 58.6 | 56.8 | 54.6 | 55.3 |
ThO2 | 0.13 | 0.23 | 0.22 | 0.13 | 0.28 | 0.25 | 0.27 | 0.82 | 0.85 | 0.43 | 0.69 |
UO2 | 4.65 | 4.66 | 5.61 | 5.77 | 5.35 | 4.51 | 4.35 | 4.44 | 5.81 | 9.08 | 8.45 |
CaO | 10.9 | 11.1 | 10.9 | 11.0 | 11.1 | 10.9 | 11.0 | 13.3 | 13.3 | 11.2 | 14.0 |
TiO2 | 4.92 | 5.23 | 5.23 | 5.07 | 5.15 | 5.05 | 5.81 | 6.77 | 7.00 | 7.16 | 7.83 |
La2O3 | 1.43 | 1.30 | 1.45 | 1.32 | 1.23 | 0.98 | 1.17 | 0.38 | 0.40 | 0.35 | 0.53 |
Ce2O3 | 3.37 | 3.47 | 3.41 | 3.20 | 3.30 | 3.75 | 3.44 | 1.88 | 1.86 | 1.11 | 1.70 |
Fe2O3 | 0 | 0 | 0.01 | 0.11 | 0 | 0 | 0 | 0 | 0 | 0.29 | 0 |
Total | 98.52 | 97.97 | 97.84 | 97.78 | 98.26 | 97.78 | 97.51 | 96.99 | 98.28 | 94.82 | 99.61 |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.89 | 0.83 | 0.77 | 0.85 | 0.85 | 0.93 | 0.84 | 0.77 | 0.78 | 0.54 | 0.73 |
Ca | 0.73 | 0.75 | 0.74 | 0.76 | 0.75 | 0.74 | 0.75 | 0.89 | 0.89 | 0.74 | 0.95 |
La | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 |
Ce | 0.08 | 0.08 | 0.08 | 0.07 | 0.08 | 0.09 | 0.08 | 0.04 | 0.04 | 0.03 | 0.04 |
Th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.01 |
U | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.08 | 0.13 | 0.12 |
∑A | 1.8 | 1.76 | 1.7 | 1.8 | 1.79 | 1.85 | 1.76 | 1.78 | 1.82 | 1.45 | 1.86 |
Nb | 1.71 | 1.69 | 1.68 | 1.68 | 1.69 | 1.69 | 1.66 | 1.65 | 1.61 | 1.53 | 1.58 |
Ta | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.07 | 0.07 | 0.03 | 0.06 | 0.05 | 0.05 |
Ti | 0.23 | 0.25 | 0.25 | 0.24 | 0.24 | 0.24 | 0.28 | 0.32 | 0.33 | 0.33 | 0.37 |
Si | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
Fe | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
F=O | 0.48 | 0.49 | 0.44 | 0.44 | 0.43 | 0.49 | 0.48 | 0.45 | 0.45 | 0.37 | 0.41 |
A-V | 0.2 | 0.24 | 0.3 | 0.2 | 0.21 | 0.15 | 0.24 | 0.22 | 0.18 | 0.55 | 0.14 |
Number | BZ-Pcl-1-13 | BZ-Pcl-1-14 | BZ-Pcl-1-15 | BZ-Pcl-1-16 | BZ-Pcl-1-17 | BZ-Pcl-1-18 | BZ-Pcl-1-19 | BZ-Pcl-1-20 | BZ-Pcl-1-21 | BZ-Pcl-1-22 | |
Rock | Alkalic granite facies | ||||||||||
F | 1.89 | 1.76 | 2.01 | 2.08 | 1.78 | 2.07 | 1.87 | 1.21 | 0.77 | 1.01 | |
Na2O | 6.32 | 4.87 | 4.45 | 5.73 | 5.84 | 6.01 | 6.03 | 6.03 | 5.86 | 5.88 | |
Ta2O5 | 2.7 | 2.29 | 3.07 | 2.81 | 2.79 | 1.73 | 2.28 | 2.2 | 4.07 | 4.21 | |
SiO2 | 0 | 0 | 0 | 0.04 | 1.49 | 0.34 | 0.22 | 0.09 | 0.14 | 0.18 | |
Nb2O5 | 55.6 | 57.8 | 56.8 | 56.1 | 53.8 | 57.2 | 57.4 | 57.7 | 57.2 | 56.8 | |
ThO2 | 0.54 | 0.39 | 0.52 | 0.61 | 0.89 | 0.94 | 0.69 | 0.71 | 0.77 | 0.78 | |
UO2 | 8.33 | 8.42 | 8.46 | 8.21 | 8.14 | 4.24 | 4.31 | 4.31 | 4.27 | 4.42 | |
CaO | 14.2 | 14.1 | 14.4 | 13.5 | 13.1 | 15.8 | 16.3 | 16.3 | 15.8 | 15.6 | |
TiO2 | 8.05 | 7.45 | 7.85 | 7.23 | 7.33 | 7.03 | 6.94 | 7.04 | 7.02 | 7 | |
La2O3 | 0.32 | 0.1 | 0.19 | 0.41 | 0.52 | 0.65 | 0.59 | 0.54 | 0.58 | 0.72 | |
Ce2O3 | 1.39 | 0.8 | 1.12 | 1.52 | 1.81 | 2.18 | 2.02 | 1.95 | 2.06 | 2.31 | |
Fe2O3 | 0.01 | 0.21 | 0.05 | 0 | 0 | 0 | 0.01 | 0.02 | 0 | 0 | |
Total | 99.34 | 98.22 | 98.85 | 98.24 | 97.45 | 98.27 | 98.64 | 98.07 | 98.53 | 98.89 | |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.77 | 0.58 | 0.53 | 0.7 | 0.71 | 0.73 | 0.73 | 0.73 | 0.7 | 0.71 | |
Ca | 0.95 | 0.93 | 0.95 | 0.92 | 0.88 | 1.06 | 1.09 | 1.09 | 1.05 | 1.04 | |
La | 0.01 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | |
Ce | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.05 | 0.05 | |
Th | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
U | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | |
∑A | 1.88 | 1.66 | 1.64 | 1.79 | 1.76 | 1.93 | 1.95 | 1.95 | 1.88 | 1.89 | |
Nb | 1.57 | 1.61 | 1.58 | 1.61 | 1.52 | 1.62 | 1.62 | 1.63 | 1.6 | 1.59 | |
Ta | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 | 0.03 | 0.04 | 0.04 | 0.07 | 0.07 | |
Ti | 0.38 | 0.34 | 0.36 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | |
Si | 0 | 0 | 0 | 0 | 0.09 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | |
Fe | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
F=O | 0.37 | 0.34 | 0.39 | 0.42 | 0.35 | 0.41 | 0.37 | 0.24 | 0.15 | 0.2 | |
A-V | 0.12 | 0.34 | 0.36 | 0.21 | 0.24 | 0.07 | 0.05 | 0.05 | 0.12 | 0.11 | |
Number | BZ-Pcl-1-23 | BZ-Pcl-1-24 | BZ-Pcl-1-25 | BZ-Pcl-1-26 | BZ-Pcl-1-27 | BZ-Pcl-1-28 | BZ-Pcl-1-29 | BZ-Pcl-1-30 | BZ-Pcl-1-31 | BZ-Pcl-1-32 | BZ-Pcl-1-33 |
Rock | Alkalic granite facies | ||||||||||
F | 2.01 | 2.25 | 1.71 | 1.72 | 1.88 | 2.01 | 1.61 | 0.73 | 0.71 | 1.05 | 1.76 |
Na2O | 6.42 | 6.39 | 5.59 | 5.58 | 5.06 | 5.37 | 5.74 | 5.81 | 5.81 | 5.63 | 5.79 |
Ta2O5 | 2.41 | 2.3 | 3.08 | 3.22 | 3.41 | 2.97 | 3.33 | 3.05 | 3.22 | 2.11 | 2.51 |
SiO2 | 0.22 | 0.66 | 2.85 | 1.71 | 1.87 | 0.39 | 0.18 | 0.11 | 0.09 | 0.2 | 0.1 |
Nb2O5 | 58.6 | 57.8 | 53.7 | 53.7 | 52.6 | 54.5 | 54.5 | 56.3 | 55.1 | 55.1 | 55.4 |
ThO2 | 0.17 | 0.29 | 0.59 | 0.68 | 0.94 | 0.73 | 0.86 | 0.84 | 0.81 | 0.7 | 0.79 |
UO2 | 6.73 | 6.06 | 8.15 | 8.97 | 8.51 | 9.36 | 8.79 | 8.59 | 8.64 | 8.8 | 8.39 |
CaO | 11.3 | 11.4 | 14.6 | 15.1 | 14.1 | 14.5 | 14.3 | 15.4 | 14.4 | 14.4 | 14.4 |
TiO2 | 5.07 | 5.16 | 7.53 | 7.49 | 7.2 | 7.75 | 7.53 | 7.41 | 7.55 | 7.64 | 7.53 |
La2O3 | 1.57 | 1.6 | 0.44 | 0.4 | 0.55 | 0.37 | 0.66 | 0.47 | 0.69 | 0.66 | 0.67 |
Ce2O3 | 3.36 | 3.47 | 1.32 | 1.22 | 1.74 | 1.26 | 1.93 | 1.15 | 1.98 | 1.99 | 1.95 |
Fe2O3 | 0.01 | 0 | 0 | 0.02 | 0.03 | 0 | 0.01 | 0.02 | 0 | 0.02 | 0 |
Total | 97.83 | 97.41 | 99.51 | 99.77 | 97.90 | 99.13 | 99.48 | 99.83 | 98.92 | 98.22 | 99.32 |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.8 | 0.79 | 0.65 | 0.67 | 0.61 | 0.66 | 0.71 | 0.71 | 0.71 | 0.7 | 0.71 |
Ca | 0.78 | 0.78 | 0.93 | 1 | 0.94 | 0.98 | 0.98 | 1.03 | 0.98 | 0.98 | 0.98 |
La | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 |
Ce | 0.08 | 0.08 | 0.03 | 0.03 | 0.04 | 0.03 | 0.05 | 0.03 | 0.05 | 0.05 | 0.05 |
Th | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
U | 0.1 | 0.09 | 0.11 | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
∑A | 1.79 | 1.78 | 1.73 | 1.83 | 1.74 | 1.82 | 1.89 | 1.91 | 1.89 | 1.87 | 1.89 |
Nb | 1.7 | 1.67 | 1.44 | 1.49 | 1.49 | 1.56 | 1.57 | 1.59 | 1.58 | 1.58 | 1.59 |
Ta | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 | 0.05 | 0.06 | 0.05 | 0.06 | 0.04 | 0.04 |
Ti | 0.24 | 0.25 | 0.34 | 0.35 | 0.34 | 0.37 | 0.36 | 0.35 | 0.36 | 0.37 | 0.36 |
Si | 0.01 | 0.04 | 0.17 | 0.11 | 0.12 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Fe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
F=O | 0.41 | 0.45 | 0.32 | 0.34 | 0.37 | 0.4 | 0.32 | 0.14 | 0.14 | 0.21 | 0.35 |
A-V | 0.21 | 0.22 | 0.27 | 0.17 | 0.26 | 0.18 | 0.11 | 0.09 | 0.11 | 0.13 | 0.11 |
Number | BZ-Pcl-2-1 | BZ-Pcl-2-2 | BZ-Pcl-2-3 | BZ-Pcl-2-4 | BZ-Pcl-2-5 | BZ-Pcl-2-6 | BZ-Pcl-2-7 | BZ-Pcl-2-8 | BZ-Pcl-2-9 | BZ-Pcl-2-10 | |
Rock | Syenite facies I | ||||||||||
F | 3.11 | 3.08 | 3.1 | 3.61 | 3.15 | 3.19 | 3.13 | 3.22 | 3.36 | 3.21 | |
Na2O | 5.12 | 4.69 | 3.46 | 2.15 | 5.28 | 5.43 | 5.32 | 5.31 | 5.48 | 5.65 | |
Ta2O5 | 0.25 | 0.49 | 0.71 | 0.78 | 0.74 | 0.31 | 0.44 | 0.83 | 1.72 | 1.27 | |
SiO2 | 1.21 | 1.05 | 1.09 | 2.11 | 0.88 | 1.35 | 2.95 | 1.33 | 0.51 | 0.78 | |
Nb2O5 | 64.1 | 64.1 | 64.3 | 64.2 | 63.5 | 65.1 | 63.2 | 64.5 | 63 | 62.1 | |
ThO2 | 0.21 | 1.29 | 0.82 | 1.08 | 0.88 | 0.32 | 0.62 | 0.81 | 0.45 | 1.21 | |
UO2 | 8.69 | 7.66 | 10.1 | 10 | 8.41 | 7.83 | 8.31 | 6.34 | 7.29 | 7.35 | |
CaO | 9.42 | 9.11 | 8.81 | 8.28 | 8.89 | 9.05 | 8.96 | 9.36 | 8.15 | 8.1 | |
TiO2 | 4.41 | 4.49 | 4.54 | 4.78 | 4.19 | 4.36 | 4.2 | 4.19 | 4.3 | 4.13 | |
La2O3 | 0.39 | 0.53 | 0.26 | 0.29 | 0.18 | 0.69 | 0.53 | 0.31 | 0.71 | 1.11 | |
Ce2O3 | 1.11 | 1.26 | 1.1 | 0.88 | 1.1 | 1.45 | 1.17 | 1.42 | 2.71 | 3.65 | |
Fe2O3 | 0.42 | 0.38 | 0.23 | 0.39 | 0.02 | 0.06 | 0.06 | 0.04 | 0.31 | 0.35 | |
Total | 98.46 | 98.15 | 98.48 | 98.56 | 97.18 | 99.13 | 98.90 | 97.62 | 97.98 | 98.89 | |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.59 | 0.54 | 0.4 | 0.24 | 0.62 | 0.62 | 0.59 | 0.61 | 0.65 | 0.67 | |
Ca | 0.6 | 0.58 | 0.56 | 0.5 | 0.58 | 0.57 | 0.55 | 0.59 | 0.53 | 0.53 | |
La | 0 | 0.01 | 0.01 | 0 | 0 | 0.01 | 0.01 | 0 | 0.02 | 0.03 | |
Ce | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.06 | 0.08 | |
Th | 0 | 0.02 | 0.01 | 0.01 | 0.01 | 0 | 0.01 | 0.01 | 0 | 0.02 | |
U | 0.11 | 0.1 | 0.13 | 0.13 | 0.11 | 0.1 | 0.11 | 0.08 | 0.1 | 0.1 | |
∑A | 1.33 | 1.27 | 1.13 | 0.9 | 1.36 | 1.34 | 1.3 | 1.33 | 1.35 | 1.43 | |
Nb | 1.71 | 1.71 | 1.71 | 1.65 | 1.74 | 1.73 | 1.65 | 1.72 | 1.73 | 1.72 | |
Ta | 0 | 0.01 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0.01 | 0.03 | 0.02 | |
Ti | 0.2 | 0.2 | 0.2 | 0.2 | 0.19 | 0.19 | 0.18 | 0.19 | 0.2 | 0.19 | |
Si | 0.07 | 0.06 | 0.06 | 0.12 | 0.05 | 0.08 | 0.17 | 0.08 | 0.03 | 0.05 | |
Fe | 0.02 | 0.02 | 0.01 | 0.02 | 0 | 0 | 0 | 0 | 0.01 | 0.02 | |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
F=O | 0.58 | 0.58 | 0.58 | 0.65 | 0.61 | 0.59 | 0.57 | 0.6 | 0.65 | 0.62 | |
A-V | 0.67 | 0.73 | 0.87 | 1.1 | 0.64 | 0.66 | 0.7 | 0.67 | 0.65 | 0.57 | |
Number | BZ-Pcl-2-11 | BZ-Pcl-2-12 | BZ-Pcl-2-13 | BZ-Pcl-2-14 | BZ-Pcl-2-15 | BZ-Pcl-2-16 | BZ-Pcl-2-17 | BZ-Pcl-2-18 | BZ-Pcl-2-19 | BZ-Pcl-2-20 | |
Rock | Syenite facies I | ||||||||||
F | 3.17 | 3.03 | 3.28 | 3.06 | 3.15 | 2.99 | 3.02 | 3.21 | 3.18 | 3.2 | |
Na2O | 2.75 | 5.35 | 4.69 | 3.03 | 4.08 | 3.95 | 4.82 | 5.9 | 4.11 | 5.45 | |
Ta2O5 | 1.53 | 1.78 | 1.81 | 1.15 | 1.76 | 1.55 | 0.97 | 1.81 | 1.68 | 0.29 | |
SiO2 | 1.28 | 0.75 | 0.53 | 2.69 | 0.5 | 1.06 | 0.7 | 0.86 | 0.48 | 1.36 | |
Nb2O5 | 62.6 | 63 | 61.7 | 62.7 | 61.7 | 63.9 | 65 | 63.5 | 61.6 | 65.1 | |
ThO2 | 0.78 | 0.43 | 0.55 | 1.83 | 1.1 | 0.67 | 1.99 | 0.4 | 1.17 | 0.29 | |
UO2 | 11 | 10.7 | 9.89 | 10.5 | 10.3 | 11.4 | 6.33 | 6.79 | 10.2 | 7.79 | |
CaO | 8.41 | 8.27 | 8.4 | 7.8 | 8.41 | 8.7 | 8.16 | 8.35 | 8.39 | 9.01 | |
TiO2 | 4.03 | 4.35 | 3.66 | 4.51 | 4.22 | 4.04 | 4.3 | 4.21 | 4.21 | 4.41 | |
La2O3 | 0.55 | 0.44 | 1.77 | 0.49 | 0.5 | 0.23 | 0.51 | 0.58 | 0.48 | 0.72 | |
Ce2O3 | 1.77 | 1.69 | 1.55 | 1.79 | 2.43 | 1.21 | 2.84 | 2.45 | 2.41 | 1.31 | |
Fe2O3 | 0.22 | 0.15 | 0.24 | 0.2 | 0.19 | 0.11 | 0.07 | 0.11 | 0.14 | 0.03 | |
Total | 98.11 | 99.91 | 98.08 | 99.71 | 98.28 | 99.80 | 98.67 | 98.13 | 98.08 | 98.97 | |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.32 | 0.63 | 0.57 | 0.34 | 0.49 | 0.46 | 0.56 | 0.69 | 0.5 | 0.62 | |
Ca | 0.54 | 0.54 | 0.57 | 0.48 | 0.56 | 0.56 | 0.52 | 0.54 | 0.56 | 0.57 | |
La | 0.01 | 0.01 | 0.04 | 0 | 0.01 | 0 | 0.01 | 0.01 | 0.01 | 0.02 | |
Ce | 0.04 | 0.04 | 0.04 | 0.04 | 0.06 | 0.03 | 0.06 | 0.05 | 0.06 | 0.03 | |
Th | 0.01 | 0 | 0 | 0.02 | 0.02 | 0 | 0.03 | 0.01 | 0.02 | 0 | |
U | 0.15 | 0.14 | 0.14 | 0.13 | 0.14 | 0.15 | 0.08 | 0.09 | 0.14 | 0.1 | |
∑A | 1.08 | 1.36 | 1.35 | 1.01 | 1.28 | 1.2 | 1.26 | 1.39 | 1.28 | 1.33 | |
Nb | 1.71 | 1.73 | 1.75 | 1.62 | 1.73 | 1.73 | 1.75 | 1.73 | 1.74 | 1.73 | |
Ta | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0 | |
Ti | 0.18 | 0.2 | 0.17 | 0.19 | 0.2 | 0.18 | 0.19 | 0.19 | 0.2 | 0.19 | |
Si | 0.08 | 0.05 | 0.03 | 0.15 | 0.03 | 0.06 | 0.04 | 0.05 | 0.03 | 0.08 | |
Fe | 0.01 | 0 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | 0.01 | 0 | |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
F=O | 0.6 | 0.58 | 0.65 | 0.56 | 0.62 | 0.57 | 0.57 | 0.61 | 0.63 | 0.59 | |
A-V | 0.92 | 0.64 | 0.65 | 0.99 | 0.72 | 0.8 | 0.74 | 0.61 | 0.72 | 0.67 | |
Number | BZ-Pcl-3-1 | BZ-Pcl-3-2 | BZ-Pcl-3-3 | BZ-Pcl-3-4 | BZ-Pcl-3-5 | BZ-Pcl-3-6 | BZ-Pcl-3-7 | BZ-Pcl-3-8 | BZ-Pcl-3-9 | BZ-Pcl-3-10 | |
Rock | Syenite facies II | ||||||||||
F | 3.01 | 3.22 | 3.08 | 3.29 | 3.31 | 2.86 | 4.21 | 3.18 | 3.11 | 3.11 | |
Na2O | 5.45 | 6.91 | 6.34 | 6.28 | 5.28 | 6.39 | 4.57 | 6.19 | 6.19 | 6.21 | |
Ta2O5 | 0.64 | 0.85 | 0.91 | 0.86 | 1.14 | 1.77 | 1.89 | 0.62 | 1.52 | 1.28 | |
SiO2 | 0.88 | 0.69 | 1.33 | 1.01 | 1.03 | 1.08 | 0.87 | 1.12 | 0.49 | 0.51 | |
Nb2O5 | 64.9 | 65.8 | 67.1 | 67.3 | 65.9 | 65.1 | 67.9 | 66.8 | 65.8 | 66.6 | |
ThO2 | 1.88 | 1.02 | 0.31 | 0.61 | 1.12 | 1.38 | 0.83 | 1.21 | 1.41 | 0.79 | |
UO2 | 7.02 | 5.83 | 8.11 | 7.61 | 6.41 | 6.11 | 6.49 | 5.19 | 5.62 | 5.46 | |
CaO | 1.28 | 1.61 | 1.17 | 1.31 | 1.52 | 1.41 | 1.25 | 1.48 | 1.52 | 1.69 | |
TiO2 | 2.72 | 2.81 | 2.41 | 2.61 | 2.38 | 2.89 | 2.71 | 2.86 | 2.86 | 2.63 | |
La2O3 | 2.01 | 2.12 | 1.22 | 0.77 | 1.68 | 2.35 | 0.62 | 2.11 | 1.19 | 1.95 | |
Ce2O3 | 8.44 | 7.85 | 6.35 | 7.87 | 8.24 | 8.48 | 7.29 | 8.29 | 8.01 | 8.53 | |
Fe2O3 | 0.11 | 0.13 | 0.16 | 0.08 | 0.25 | 0.02 | 0.03 | 0.01 | 0.36 | 0.14 | |
Total | 98.34 | 98.86 | 98.51 | 99.55 | 98.24 | 99.86 | 98.63 | 99.01 | 98.11 | 98.89 | |
Structural formula (∑B-site cations = 2)/apfu | |||||||||||
Na | 0.65 | 0.82 | 0.73 | 0.72 | 0.62 | 0.75 | 0.52 | 0.71 | 0.73 | 0.73 | |
Ca | 0.08 | 0.11 | 0.07 | 0.08 | 0.1 | 0.09 | 0.08 | 0.09 | 0.1 | 0.11 | |
La | 0.05 | 0.05 | 0.03 | 0.02 | 0.04 | 0.05 | 0.01 | 0.05 | 0.03 | 0.04 | |
Ce | 0.19 | 0.18 | 0.14 | 0.17 | 0.18 | 0.19 | 0.16 | 0.18 | 0.18 | 0.19 | |
Th | 0.03 | 0.01 | 0 | 0 | 0.02 | 0.02 | 0 | 0.02 | 0.02 | 0.01 | |
U | 0.1 | 0.08 | 0.11 | 0.1 | 0.09 | 0.08 | 0.08 | 0.07 | 0.08 | 0.07 | |
∑A | 1.1 | 1.24 | 1.07 | 1.1 | 1.04 | 1.18 | 0.85 | 1.12 | 1.12 | 1.16 | |
Nb | 1.81 | 1.81 | 1.79 | 1.81 | 1.8 | 1.77 | 1.8 | 1.8 | 1.8 | 1.82 | |
Ta | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.01 | 0.02 | 0.02 | |
Ti | 0.13 | 0.13 | 0.11 | 0.12 | 0.11 | 0.13 | 0.12 | 0.13 | 0.13 | 0.12 | |
Si | 0.05 | 0.04 | 0.08 | 0.06 | 0.06 | 0.07 | 0.05 | 0.07 | 0.03 | 0.03 | |
Fe | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0.02 | 0.01 | |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
F=O | 0.59 | 0.62 | 0.58 | 0.62 | 0.63 | 0.55 | 0.78 | 0.6 | 0.59 | 0.6 | |
A-V | 0.9 | 0.76 | 0.93 | 0.9 | 0.96 | 0.82 | 1.15 | 0.88 | 0.88 | 0.84 | |
Number | BZ-Pcl-3-11 | BZ-Pcl-3-12 | BZ-Pcl-3-13 | BZ-Pcl-3-14 | BZ-Pcl-3-15 | BZ-Pcl-3-16 | BZ-Pcl-3-17 | BZ-Pcl-3-18 | BZ-Pcl-3-19 | BZ-Pcl-3-20 | |
Rock | Syenite facies II | ||||||||||
F | 3.22 | 3.21 | 3.12 | 3.13 | 3.01 | 3.08 | 3.19 | 3.25 | 3.33 | 3.15 | |
Na2O | 5.49 | 4.24 | 4.21 | 5.49 | 5.98 | 5.63 | 5.52 | 6.24 | 5.3 | 6.38 | |
Ta2O5 | 1.41 | 1.13 | 0.98 | 1.52 | 0.93 | 0.71 | 1.38 | 0.6 | 1.12 | 0.92 | |
SiO2 | 0.52 | 0.83 | 1.1 | 0.81 | 0.57 | 1.18 | 0.61 | 1.11 | 1.01 | 1.28 | |
Nb2O5 | 65.3 | 67.6 | 67.6 | 66.9 | 65.7 | 66.6 | 65.3 | 66.8 | 65.9 | 67.2 | |
ThO2 | 0.68 | 1.22 | 0.12 | 0.41 | 1.66 | 0.11 | 0.6 | 1.23 | 1.16 | 0.37 | |
UO2 | 6.21 | 6.81 | 8.61 | 6.98 | 7.36 | 8.37 | 6.3 | 5.21 | 6.44 | 8.12 | |
CaO | 1.78 | 1.52 | 1.42 | 1.47 | 1.51 | 1.42 | 1.82 | 1.53 | 1.5 | 1.2 | |
TiO2 | 2.71 | 2.63 | 2.22 | 2.86 | 2.53 | 2.81 | 2.73 | 2.8 | 2.41 | 2.5 | |
La2O3 | 2.59 | 1.69 | 1.19 | 1.69 | 2.11 | 1.78 | 2.57 | 2.23 | 1.7 | 1.31 | |
Ce2O3 | 8.41 | 7.63 | 7.63 | 8.01 | 7.68 | 7.32 | 8.39 | 8.31 | 8.31 | 6.34 | |
Fe2O3 | 0.18 | 0.07 | 0.09 | 0.14 | 0.12 | 0.23 | 0.14 | 0.11 | 0.26 | 0.18 | |
Total | 98.48 | 98.59 | 98.30 | 99.37 | 99.15 | 99.20 | 98.56 | 99.42 | 98.44 | 98.94 | |
Structural formula (∑B-site cations)/apfu | |||||||||||
Na | 0.65 | 0.49 | 0.49 | 0.63 | 0.71 | 0.65 | 0.66 | 0.72 | 0.62 | 0.73 | |
Ca | 0.12 | 0.1 | 0.09 | 0.09 | 0.1 | 0.09 | 0.12 | 0.1 | 0.1 | 0.08 | |
La | 0.06 | 0.04 | 0.03 | 0.04 | 0.05 | 0.04 | 0.06 | 0.05 | 0.04 | 0.03 | |
Ce | 0.19 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.19 | 0.18 | 0.18 | 0.14 | |
Th | 0.01 | 0.02 | 0 | 0.01 | 0.02 | 0 | 0.01 | 0.02 | 0.02 | 0 | |
U | 0.08 | 0.09 | 0.11 | 0.09 | 0.1 | 0.11 | 0.09 | 0.07 | 0.09 | 0.11 | |
∑A | 1.11 | 0.89 | 0.88 | 1.03 | 1.16 | 1.05 | 1.12 | 1.13 | 1.04 | 1.08 | |
Nb | 1.81 | 1.81 | 1.82 | 1.79 | 1.83 | 1.78 | 1.81 | 1.8 | 1.8 | 1.79 | |
Ta | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | |
Ti | 0.13 | 0.12 | 0.1 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.11 | 0.11 | |
Si | 0.03 | 0.05 | 0.07 | 0.05 | 0.04 | 0.07 | 0.04 | 0.07 | 0.06 | 0.08 | |
Fe | 0.01 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.01 | 0 | 0.01 | 0.01 | |
∑B | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
F=O | 0.63 | 0.6 | 0.59 | 0.59 | 0.59 | 0.58 | 0.62 | 0.61 | 0.64 | 0.59 | |
A-V | 0.89 | 1.11 | 1.12 | 0.97 | 0.84 | 0.95 | 0.88 | 0.87 | 0.96 | 0.92 |
Sample No. | BZ-Pcl-1-1 | BZ-Pcl-1-2 | BZ-Pcl-1-3 | BZ-Pcl-1-4 | BZ-Pcl-1-5 | BZ-Pcl-1-6 | BZ-Pcl-1-7 | BZ-Pcl-1-8 | BZ-Pcl-1-9 | BZ-Pcl-1-10 |
Rock | Alkalic granite facies | |||||||||
Li | 35.1 | 39.8 | 32.6 | 14.0 | 11.4 | 23.3 | 25.9 | 6.6 | 7.7 | 10.3 |
Sc | 0.19 | 0.26 | 0.10 | 0.09 | 0.12 | 0.07 | 0.34 | 0.33 | 0.16 | 0.25 |
V | 0.02 | 0.05 | 0.02 | 0.00 | 0.00 | 0.01 | 0.13 | 0.03 | 0.04 | 0.19 |
Cr | 15.7 | 2.88 | 1.10 | 3.52 | 2.12 | 14.7 | 25.7 | 3.37 | 2.94 | 11.7 |
Co | 0.04 | 0.09 | 0.11 | 0.06 | 0.06 | 0.00 | 0.07 | 0.06 | 0.05 | 0.05 |
Ni | 0.14 | 0.00 | 0.00 | 0.00 | 0.10 | 0.17 | 0.32 | 0.00 | 0.23 | 0.00 |
Cu | 7.13 | 1.88 | 1.53 | 1.08 | 1.15 | 1.26 | 3.10 | 2.07 | 0.97 | 6.21 |
Zn | 177 | 80.1 | 30.2 | 6.00 | 39.2 | 32.6 | 316 | 10,630 | 147 | 37,803 |
Ga | 363 | 342 | 310 | 298 | 305 | 328 | 273 | 228 | 326 | 317 |
Ge | 136 | 122 | 109 | 107 | 113 | 114 | 77.4 | 79.9 | 105 | 103 |
Rb | 3.27 | 7.22 | 3.34 | 1.40 | 2.80 | 4.49 | 5.18 | 13.37 | 2.26 | 4.39 |
Sr | 633 | 624 | 678 | 654 | 672 | 682 | 370 | 360 | 366 | 403 |
Y | 3941 | 1940 | 1507 | 1615 | 2365 | 2173 | 436 | 450 | 543 | 918 |
Zr | 131 | 287 | 104 | 127 | 94.6 | 99.0 | 245 | 375 | 227 | 266 |
Nb | 389,676 | 400,247 | 401,359 | 403,532 | 399,678 | 397,061 | 375,443 | 380,754 | 381,211 | 373,589 |
Mo | 101 | 55.7 | 105 | 117 | 111 | 109 | 6.69 | 6.68 | 7.04 | 7.98 |
Sn | 881 | 978 | 847 | 889 | 906 | 896 | 587 | 858 | 663 | 669 |
Cs | 2.84 | 8.47 | 2.12 | 1.41 | 4.02 | 2.05 | 4.52 | 6.86 | 4.72 | 6.81 |
Ba | 10.8 | 12.8 | 6.82 | 7.70 | 10.37 | 9.75 | 13.0 | 13.7 | 16.4 | 15.7 |
La | 6405 | 5579 | 5035 | 4577 | 4988 | 6158 | 3741 | 3182 | 5603 | 4970 |
Ce | 19,180 | 18,641 | 17,263 | 16,656 | 17,600 | 19,742 | 11,241 | 10,755 | 16,507 | 15,954 |
Pr | 2152 | 2056 | 1905 | 1895 | 1981 | 2167 | 1208 | 1240 | 1814 | 1813 |
Nd | 7717 | 7103 | 6569 | 6559 | 7057 | 7448 | 3714 | 4080 | 5652 | 5818 |
Sm | 1323 | 1126 | 1019 | 1065 | 1138 | 1167 | 656 | 781 | 1030 | 1139 |
Eu | 45.8 | 38.3 | 32.7 | 34.5 | 38.3 | 39.0 | 17.8 | 19.4 | 28.6 | 31.9 |
Gd | 648 | 443 | 405 | 413 | 476 | 473 | 324 | 386 | 511 | 628 |
Tb | 118 | 73.6 | 65.8 | 70.2 | 81.0 | 79.9 | 47.6 | 56.2 | 75.6 | 101 |
Dy | 691 | 384 | 348 | 377 | 434 | 427 | 245 | 279 | 371 | 537 |
Ho | 119 | 58.2 | 53.0 | 57.0 | 66.2 | 65.9 | 32.6 | 37.8 | 46.5 | 73.6 |
Er | 389 | 181 | 159 | 175 | 204 | 203 | 86.8 | 101 | 110 | 183 |
Tm | 42.6 | 20.2 | 15.8 | 18.9 | 22.8 | 22.7 | 7.16 | 9.52 | 8.64 | 15.8 |
Yb | 223 | 109 | 75.5 | 97.4 | 133 | 129 | 36.1 | 55.6 | 41.5 | 87.0 |
Lu | 15.9 | 7.20 | 4.68 | 5.88 | 9.07 | 8.79 | 2.17 | 4.08 | 2.75 | 6.60 |
Hf | 26.1 | 55.9 | 14.1 | 13.0 | 13.9 | 15.4 | 12.9 | 45.0 | 40.3 | 15.4 |
Ta | 17,697 | 14,000 | 15,515 | 14,185 | 18,652 | 17,988 | 22,845 | 26,340 | 27,933 | 24,964 |
W | 1181 | 1221 | 1672 | 1782 | 1712 | 1648 | 1421 | 817 | 774 | 1033 |
Pb | 14,318 | 13,586 | 13,837 | 13,813 | 14,616 | 15,501 | 9880 | 8655 | 3635 | 9387 |
Th | 7261 | 8252 | 6071 | 6238 | 6754 | 6821 | 5190 | 6444 | 7563 | 7306 |
U | 36,824 | 37,371 | 37,956 | 38,009 | 37,605 | 38,937 | 71,851 | 82,542 | 77,461 | 73,864 |
Sample No. | BZ-Pcl-2-1 | BZ-Pcl-2-2 | BZ-Pcl-2-3 | BZ-Pcl-2-4 | BZ-Pcl-2-5 | BZ-Pcl-3-1 | BZ-Pcl-3-2 | BZ-Pcl-3-3 | BZ-Pcl-3-4 | BZ-Pcl-3-5 |
Rock | Syenite facies I | Syenite facies II | ||||||||
Li | 34.4 | 51.6 | 66.1 | 20.2 | 31.2 | 51.1 | 63.2 | 47.5 | 52.1 | 77.3 |
Sc | 0.21 | 0.16 | 0.30 | 0.29 | 0.18 | 0.37 | 0.31 | 0.43 | 0.24 | 0.33 |
V | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.02 | 0.10 |
Cr | 13.2 | 3.74 | 2.13 | 3.78 | 5.22 | 12.1 | 15.1 | 2.48 | 3.74 | 5.27 |
Co | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.05 | 0.02 |
Ni | 0.04 | 0.00 | 0.00 | 0.00 | 0.10 | 0.12 | 0.11 | 0.05 | 0.25 | 0.02 |
Cu | 6.15 | 2.74 | 2.51 | 3.08 | 2.11 | 1.75 | 4.22 | 2.11 | 3.92 | 5.10 |
Zn | 148 | 225 | 78.2 | 97.8 | 55.2 | 74.5 | 92.3 | 102 | 113 | 97.5 |
Ga | 452 | 551 | 432 | 392 | 351 | 312 | 492 | 531 | 520 | 602 |
Ge | 155 | 172 | 121 | 112 | 102 | 131 | 120 | 122 | 151 | 136 |
Rb | 4.78 | 5.12 | 4.42 | 3.21 | 2.53 | 4.47 | 5.98 | 6.36 | 7.31 | 9.91 |
Sr | 733 | 701 | 698 | 722 | 688 | 680 | 751 | 721 | 702 | 822 |
Y | 4731 | 2331 | 1811 | 1623 | 2374 | 5920 | 2925 | 2257 | 3261 | 825 |
Zr | 313 | 298 | 253 | 320 | 253 | 234 | 322 | 407 | 351 | 382 |
Nb | 432,610 | 422,876 | 446,103 | 417,105 | 423,114 | 454,584 | 463,879 | 466,448 | 435,879 | 443,567 |
Mo | 74.3 | 58.5 | 67.2 | 74.5 | 120 | 113 | 130 | 122 | 151 | 102 |
Sn | 992 | 956 | 1022 | 1113 | 985 | 898 | 1123 | 1102 | 988 | 1223 |
Cs | 7.54 | 6.32 | 4.42 | 5.31 | 3.31 | 9.11 | 5.32 | 6.97 | 5.35 | 6.51 |
Ba | 9.31 | 6.21 | 5.32 | 8.32 | 5.55 | 9.32 | 11.2 | 12.3 | 9.32 | 6.51 |
La | 7663 | 6591 | 6112 | 4587 | 5003 | 9612 | 8367 | 7555 | 9229 | 8406 |
Ce | 22,451 | 22,301 | 20,645 | 16,632 | 17,606 | 28,763 | 27,955 | 25,887 | 29,605 | 24,763 |
Pr | 2553 | 2451 | 2261 | 1884 | 2003 | 3215 | 3101 | 2865 | 3248 | 2725 |
Nd | 9221 | 8496 | 7854 | 6498 | 7101 | 11,548 | 10,631 | 9854 | 11,169 | 8479 |
Sm | 1573 | 1311 | 1219 | 1082 | 1205 | 1993 | 1679 | 1530 | 1748 | 1548 |
Eu | 56.3 | 44.1 | 39.1 | 35.6 | 41.2 | 70.1 | 58.1 | 49.2 | 59.3 | 43.1 |
Gd | 781 | 529 | 479 | 402 | 485 | 975 | 659 | 608 | 711 | 768 |
Tb | 143 | 89.1 | 80.1 | 69.5 | 90.2 | 172 | 111 | 99.1 | 118 | 115 |
Dy | 830 | 468 | 409 | 396 | 441 | 1056 | 579 | 524 | 638 | 561 |
Ho | 142 | 71.2 | 62.9 | 59.3 | 65.3 | 181 | 87.5 | 80.2 | 97.9 | 70.1 |
Er | 471 | 220 | 189 | 181 | 213 | 589 | 272.3 | 241 | 306 | 163 |
Tm | 53.2 | 26.3 | 19.1 | 19.6 | 23.5 | 65.1 | 31.2 | 24.2 | 33.9 | 13.1 |
Yb | 271 | 128 | 92.1 | 99.1 | 143 | 329 | 162.9 | 115 | 192 | 61.9 |
Lu | 19.1 | 8.53 | 5.9 | 6.21 | 10.2 | 24.1 | 11.1 | 7.14 | 13.4 | 3.92 |
Hf | 53.3 | 58.9 | 31.2 | 47.5 | 44.3 | 52.1 | 31.2 | 58.8 | 61.1 | 33.5 |
Ta | 13,444 | 13,105 | 15,964 | 19,104 | 20,486 | 8101 | 7543 | 9203 | 10,778 | 11,541 |
W | 1271 | 1253 | 1544 | 1631 | 1692 | 1754 | 1812 | 1815 | 1765 | 1475 |
Pb | 11,534 | 10,531 | 11,157 | 12,548 | 12,154 | 13,521 | 13,022 | 14,554 | 15,658 | 14,987 |
Th | 6657 | 6895 | 7458 | 8143 | 8025 | 5103 | 8013 | 7485 | 7985 | 6921 |
U | 74,654 | 73,551 | 69,531 | 86,698 | 102,598 | 105,874 | 78,546 | 69,854 | 72,454 | 68,589 |
4. Samples and Analytical Methods
5. Analytical Results
5.1. Major Element Composition of Pyrochlore
5.2. Classification of Pyrochlore in the Boziguoer Deposit
5.3. Trace Element Composition of Pyrochlore
6. Discussion
6.1. Substitution of Elements in Pyrochlore Supergroup Minerals
6.2. Genesis of Pyrochlore Supergroup Minerals from the Boziguoer Deposit
6.3. Implications for Alkaline Magma Differentiation and Nb Enrichment
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.H.; Wang, R.J.; Li, J.K.; Zhao, Z.; Yu, Y.; Dai, J.J.; Chen, Z.H.; Li, D.X.; Qu, W.J.; Deng, M.C.; et al. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geol. China 2013, 40, 361–370, (In Chinese with English Abstract). [Google Scholar]
- Zhai, M.G.; Wu, F.Y.; Hu, R.Z.; Jiang, S.Y.; Li, W.C.; Wang, R.C.; Wang, D.H.; Qi, T.; Qin, K.Z.; Wen, H.J. Critical metal mineral resources: Current research status and scientific issues. Bull. Natl. Nat. Sci. Found. China 2019, 2, 106–111, (In Chinese with English Abstract). [Google Scholar]
- Steenfelt, A. High-technology metals in alkaline and carbonatitic rocks in Greenland—recognition and exploration. J. Geochem. Explor. 1991, 40, 263–279. [Google Scholar] [CrossRef]
- Ohnenstetter, D.; Piantone, P. Pyrochlore-Group Minerals in the Beauvoir Peraluminous Leukogranite, Massif-Central, France. Can. Miner. 1992, 30, 771–784. Available online: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027047976&partnerID=MN8TOARS (accessed on 5 February 2022).
- Aurisicchio, C.D.; De Vito, C. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy. Can. Miner. 2002, 40, 799–814. [Google Scholar] [CrossRef] [Green Version]
- Cerny, P.; Chapman, R.; Ferreira, K.; Smeds, S.A. Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varutrask granitic pegmatite, Sweden: The case of an “anomalous” columbite-tantalite trend. Am. Miner. 2004, 89, 505–518. [Google Scholar] [CrossRef]
- Torro, L.; Villanova, C.; Castillo, M.; Campeny, M.; Goncalves, A.O.; Melgarejo, J.C. Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Miner. Mag. 2012, 76, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Salvi, S.; Williams, J.A.E. The role of hydrothermal processes in the granite hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions. Geochim. Cosmochim. Acta 1990, 54, 2403–2418. [Google Scholar] [CrossRef]
- Salvi, S.; Williams, J.A.E. Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Z. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J. Asian Earth Sci. 2017, 137, 35–79. [Google Scholar] [CrossRef]
- Kirwin, D. Granite-related ore deposits. Econ. Geol. 2012, 107, 383–384. [Google Scholar] [CrossRef]
- Dostal, J.; Shellnutt, J.G. Origin of peralkaline granites of the Jurassic Bokan Mountain complex (southeastern Alaska) hosting rare metal mineralization. Int. Geol. Rev. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Salvi, S.; Williams, J.A.E. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim. Cosmochim. Acta 1996, 60, 1917–1932. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Trumbull, R.B.; Dulski, P.; Emmermann, R. Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-enrichment from Melt Inclusions. Econ. Geol. 2002, 97, 399–413. [Google Scholar] [CrossRef]
- Williams, J.A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilisation of the Rare Earth Elements—A Tale of “Ceria” and “Yttria”. Elements 2012, 8, 355–360. [Google Scholar] [CrossRef]
- Dostal, J.; Kontak, D.J.; Karl, S.M. The early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): Geochemistry, petrogenesis and rare-metal mineralization. Lithos 2014, 202–203, 395–412. [Google Scholar] [CrossRef]
- Sun, Z.H.; Qin, K.Z.; Mao, Y.J.; Tang, D.M.; Ma, D.C. Characteristics and significance of aegirine and arfvedsonite in Boziguoer Nb-Ta-Zr-Rb-REE deposit related to alkaline granite, Xinjiang. Acta Petrol. Sin. 2021, 37, 3687–3711, (In Chinese with English Abstract). [Google Scholar]
- Xu, H.M.; Fang, J.L.; Wang, J.; Fan, L. Geological characteristics of Boziguoer Niobium-tantalum deposit in Xinjiang. Miner. Depos. 2010, 29, 309–310. (In Chinese) [Google Scholar]
- Xu, H.M.; Zou, T.R.; Fang, J.L.; Xu, J.; Fan, L.; Wang, J. Age and genesis of Boziguoer Niobium-tantalite deposit in Xinjiang. Miner. Depos. 2012, 31, 625–626. (In Chinese) [Google Scholar]
- Yin, J.W.; Li, G.W.; Yang, G.M.; Ge, X.K.; Xu, H.M.; Wang, J. Fluornatropyrochlore, a new pyrochlore supergroup mineral from the Boziguoer rare earth element deposit, Baicheng county, Akesu, Xinjiang, China. Can. Miner. 2015, 53, 455–460. [Google Scholar] [CrossRef]
- Ogunleye, P.O.; Garba, I.; Ike, E.C. Factors contributing to enrichment and crystallization of niobium in pyrochlore in the Kaffo albite arfvedsonite granite, Ririwai Complex, Younger Granites province of Nigeria. J. Afr. Earth Sci. 2006, 44, 372–382. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Hoda, S.Q.; Sinha, R.P.; Banerjee, D.C.; Dwivedy, K.K. Economic aspects of carbonatites of India. J. Asian Earth Sci. 2000, 18, 229–235. [Google Scholar] [CrossRef]
- Cordeiro, P.F.O.; Brod, J.A.; Palmieri, M.; Oliveira, C.G.; Barbosa, E.S.R.; Santo, R.V. The Catalão I niobium deposit, central brazil: Resources, geology and pyrochlore chemistry. Ore Geol. Rev. 2011, 41, 112–121. [Google Scholar] [CrossRef]
- Mackay, D.A.R.; Simandl, G.J. Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochem. Explor. Environ. Anal. 2015, 15, 167–178. [Google Scholar] [CrossRef]
- Mitchell, R.H. Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol. Rev. 2015, 64, 626–641. [Google Scholar] [CrossRef]
- Liu, C.H.; Yin, J.W.; Wu, C.L.; Cai, J.; Shao, X.K.; Yang, H.T.; Gao, Y.H.; Lei, M.; Xu, H.M.; Wang, J. Mineralogy and temperature of magma generation for A-type granitoids in Boziguoer, Baicheng County, Xinjiang. Acta Petrol. Sin. 2012, 31, 589–602, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.H.; Wu, C.L.; Gao, Y.H.; Lei, M.; Qin, H.P.; Li, M.Z. Zircon LA-ICP-MS U-Pb dating and Lu-Hf isotopic system of A-type granitoids in South Tianshan, Baicheng County, Xinjiang. Acta Petrol. Sin. 2014, 30, 1595–1614, (In Chinese with English Abstract). [Google Scholar]
- Yin, J.; Shao, X.; Yang, H.; Piao, T.; Xu, H.; Wang, J. Radioactive mineral characteristics of Boziguoer alkaline rocks in Baicheng, Xinjiang. Miner. Depos. 2013, 32, 337–352, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yin, J.; Yan, X.; Park, J.; Hou, F.; Chen, P.; Nie, X.; Xu, H.; Wang, J. Mineralogical characteristics of intrusive rocks in Boziguoer east mining area, Baicheng county, Xinjiang. Earth Sci. J. China Univ. Geosci. 2014, 39, 251–260, (In Chinese with English Abstract). [Google Scholar]
- Hogarth, D.D.; Horne, J.E.T. Non-metamict uranoan pyrochlore and uranpyrochlore from tuff near Ndale, Fort Portal area, Uganda. Miner. Mag. 1989, 53, 257–262. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Ewing, R.C. Geochemical alteration of pyrochlore group minerals. pyrochlore subgroup. Am. Miner. 1995, 80, 732–743. [Google Scholar] [CrossRef]
- Williams, C.T.; Wall, F.; Woolley, A.R.; Phillipo, S. Compositional variation in pyrochlore from the Bingo carbonatite, Zaire. J. Afr. Earth Sci. 1997, 25, 137–145. [Google Scholar] [CrossRef]
- Hogarth, D.D.; Williams, C.T.; Jones, P. Primary zoning in pyrochlore group minerals from carbonatites. Miner. Mag. 2000, 64, 683–697. [Google Scholar] [CrossRef]
- Nasraoui, M.; Bilal, E. Pyrochlore from the Lueshe carbonatite complex (Democratic Republic of Congo): A geochemical record of different alteration stages. J. Asian Earth Sci. 2000, 18, 237–251. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur. J. Miner. 2002, 14, 821–836. [Google Scholar] [CrossRef]
- Zurevinski, S.E.; Mitchell, R.H. Extreme compositional variation of pyrochlore group minerals at the Oka carbonatite complex, Quebec: Evidence of magma mixing. Can. Miner. 2004, 42, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Lee, J.I.; Garcia, D.; Moutte, J.; Williams, C.T.; Wall, F.; Kim, Y. Pyrochlore chemistry from the Sokliphoscorite–carbonatite complex, Finland: Implications for the genesis of phoscorite and carbonatite association. Geochem. J. 2006, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bambi, A.C.J.M.; Costanzo, A.; Goncalves, A.O.; Melgarejo, J.C. Tracing the chemical evolution of primary pyrochlore from plutonic to volcanic carbonatites: The role of fluorine. Miner. Mag. 2012, 76, 377–392. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Williams, C.T.; Wall, F.; Zolotarev, A.A. Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the khibina alkaline massif. Geol. Ore Deposit. 2012, 54, 503–515. [Google Scholar] [CrossRef]
- McCreath, J.A.; Finch, A.A.; Herd, D.A.; Armour, B.A. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta Nb deposit. Am. Miner. 2013, 98, 426–438. [Google Scholar] [CrossRef]
- Walter, B.F.; Parsapoor, A.; Braunger, S.; Marks, M.A.W.; Wenzel, T.; Martin, M.; Markl, G. Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany). Chem. Geol. 2018, 498, 1–16. [Google Scholar] [CrossRef]
- Jahn, B.M.; Griffin, W.L.; Windley, B. Continental growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics 2000, 328, 5–7. [Google Scholar] [CrossRef]
- Han, B.F.; Ji, J.Q.; Song, B.; Chen, L.H.; Zhang, L. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post- collisional plutonism. Acta Petrol. Sin. 2006, 22, 1077–1086, (In Chinese with English abstract). [Google Scholar]
- Qin, K.Z.; Su, B.X.; Patrick, A.S.; Tang, D.M.; Li, X.H.; Sun, H.; Xiao, Q.H.; Liu, P.P. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. Am. J. Sci. 2011, 311, 237–260. [Google Scholar] [CrossRef]
- Qin, K.Z.; Tang, D.M.; Su, B.X.; Mao, Y.J.; Xue, S.C.; Tian, Y.; Sun, H.; San, J.Z.; Xiao, Q.H.; Deng, G. The tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, Northern Xinjiang. Northwest. Geol. 2012, 45, 83–116, (In Chinese with English Abstract). [Google Scholar]
- Qin, K.Z.; Zhai, M.G.; Li, G.M.; Zhao, J.X.; Zeng, Q.D.; Gao, J.; Xiao, W.J.; Li, J.L.; Sun, S. Links of Collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrol. Sin. 2017, 33, 305–325, (In Chinese with English Abstract). [Google Scholar]
- Su, B.X.; Qin, K.Z.; Patrick, A.S.; Li, X.H.; Yang, Y.H.; Sun, H.; Tang, D.M.; Liu, P.P.; Xiao, Q.H.; Malaviarachchi, S.P.K. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Res. 2011, 20, 516–531. [Google Scholar] [CrossRef]
- Su, B.X.; Qin, K.Z.; Sakyi, P.A.; Liu, P.P.; Tang, D.M.; Malaviarachchi, S.P.K.; Xiao, Q.H.; Sun, H.; Dai, Y.C.; Hu, Y. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2011, 41, 31–43. [Google Scholar] [CrossRef]
- Qin, K.Z.; Sun, S.; Li, J.L.; Fang, T.H.; Wang, S.L.; Liu, W. Paleozoic epithermal Au and porphyry Cu Deposits in North Xinjiang, China: Epochs, Features, Tectonic Linkage and Exploration Significance. Resour. Geol. 2002, 52, 291–300. [Google Scholar] [CrossRef]
- Li, J.Y.; He, G.Q.; Xu, X.; Li, H.Q.; Sun, G.H.; Yang, T.N.; Gao, L.M.; Zhu, Z.X. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geol. Sin. Engl. 2006, 80, 148–168, (In Chinese with English Abstract). [Google Scholar]
- Yang, T.N.; Li, J.Y.; Sun, G.H.; Wang, Y.B. Earlier Devonian active continental arc in Central Tianshan: Evidence of geochemical analyses and Zircon SHRIMP dating on mylonitized granitic rock. Acta Petrol. Sin. 2006, 22, 41–48, (In Chinese with English Abstract). [Google Scholar]
- Zhu, Z.X.; Wang, K.Z.; Xu, D.; Su, Y.L.; Wu, Y.M. SHRIMP U-Pb dating of zircons from Carboniferous intrusive rocks on the active continental margin of Eren Habirga, West Tianshan, Xinjiang, China, and its geological implications. Geol. Bull. China 2006, 25, 986–991, (In Chinese with English Abstract). [Google Scholar]
- Xiao, W.J.; Han, C.M.; Yuan, C. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.C.; Han, C.M. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, Z.X.; Li, X.H.; Ye, H.M. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. J. Asian Earth Sci. 2009, 35, 167–179. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, T.; Hong, D.W.; Han, B.F.; Zhang, J.J.; Shi, X.J.; Wang, C. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance. Acta Petrol. Et Mineral. 2010, 29, 619–641, (In Chinese with English abstract). [Google Scholar]
- Huang, H.; Zhang, Z.C.; Zhang, D.Y.; Du, H.X.; Ma, L.T.; Kang, J.L.; Xue, C.J. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geol. Sin. 2011, 85, 1305–1333, (In Chinese with English abstract). [Google Scholar]
- Zong, Z.J.; Du, Y.S.; Li, S.T.; Cao, Y.; Du, J.G.; Deng, X.H.; Xue, L.W. Petrogenesis of the early Permian A-type granites in the Halajun region, southwest Tianshan, western Xinjiang, NW China: Implications for geodynamics of Tarim large igneous province. Int. Geol. Rev. 2020, 63, 1110–1131. [Google Scholar] [CrossRef]
- Gao, J.; Long, L.L.; Qian, Q.; Huang, D.Z.; Su, W.; Klemd, R. South Tianshan: A Late Paleozoic or a Triassic orogen. Acta Petrol. Sin. 2006, 22, 1049–1061, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.X.; Xu, B.L.; Zou, T.R.; Lu, F.X.; Tong, Y.; Cai, J.H. Petrochemistry and tectonic significance of Hercynian alkaline rocks along the northern margin of the Tarim platform and its adjacent area. Xinjiang Geol. 2004, 22, 43–49, (In Chinese with English Abstract). [Google Scholar]
- Zou, T.R.; Li, Q.C. Rare and Rare Earth Metallic Deposits in Xinjiang, China; Geological Publishing House: Xinjiang, China, 2006. (In Chinese) [Google Scholar]
- Zou, T.R.; Xu, J.; Chen, W.S.; Xia, F.R. Rare and rare earth mineral deposits related to alkaline rocks on northern margin of Tarim Basin, Xinjing, China. Miner. Depos. 2002, 21, 845–848, (In Chinese with English Abstract). [Google Scholar]
- Huang, H.; Zhang, Z.C.; Santosh, M.; Zhang, D.Y. Geochronology, geochemistry and metallogenic implications of the Boziguo’er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China. Ore Geol. Rev. 2014, 61, 157–174. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations inferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner. Mag. 1987, 51, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.M.; Gao, S.; Diwu, C.R.; Ling, W.L. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. Am. J. Sci. 2008, 308, 421–468. [Google Scholar] [CrossRef]
- Atencio, D.; Andrade, M.B.; Christy, A.G.; Gieré, R.; Kartashov, P.M. The pyrochlore supergroup of minerals: Nomenclature. Can. Miner. 2010, 48, 673–698. [Google Scholar] [CrossRef]
- Caprilli, E.; Della Ventura, G.; Williams, T.C.; Parodi, G.C.; Tuccimei, P. The crystal chemistry of non-metamict pyrochlore-group minerals from Latium, Italy. Can. Miner. 2006, 44, 1367–1378. [Google Scholar] [CrossRef]
- Wall, F.; Williams, C.T.; Woolley, A.R.; Nasraoui, M. Pyrochlore from weathered carbonatite at Lueshe, Zaire. Miner. Mag. 1996, 60, 731–750. [Google Scholar] [CrossRef]
- Hogarth, D.D. Classification and nomenclature of the pyrochlore group. Am. Miner. 1977, 62, 403–410. [Google Scholar]
- Finch, A.A.; McCreath, J.A.; Reekie, C.D.J.; Hutchison, W.; Ismaila, A.; Armour, B.A.; Andersen, T.; Simonsen, S.L. From mantle to Motzfeldt: A genetic model for syenite-hosted Ta Nb-mineralisation. Ore Geol. Rev. 2019, 107, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. Lueshite, pyrochlore and monazite-(Ce) from apatite–dolomite carbonatite, LesnayaVaraka complex, Kola Peninsula, Russia. Miner. Mag. 1998, 62, 769–782. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Williams, C.T. Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. I. In Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; Wall, F., Zaitsev, A.N., Eds.; Mineralogical Society Series: London, UK, 2004; pp. 293–340. [Google Scholar]
- Chakhmouradian, A.R. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol. 2006, 235, 138–160. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.K.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642–666. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Ewing, R.C.; Williams, C.T.; Mariano, A.N. An overview of the crystal chemistry, durability, and radiation damage effects of natural pyrochlore. MRS Proc. 2000, 663, 921. [Google Scholar] [CrossRef]
- Khromova, E.A.; Doroshkevich, A.G.; Sharygin, V.V.; Izbrodin, L.A. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan. Geol. Ore Deposit. 2017, 59, 752–764. [Google Scholar] [CrossRef]
- Yaroshevskii, A.A.; Bagdasarov, Y.A. Geochemical diversity of minerals of the pyrochlore group. Geochem. Int. 2008, 12, 1322–1345. [Google Scholar] [CrossRef]
- Stephan, K.; Jasper, B. Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts. Geochem. Trans. 2020, 21, 9. [Google Scholar] [CrossRef]
- Anenburg, M.; Williams, M.J. Quantifying the Tetrad Effect, Shape Components, and Ce–Eu–Gd Anomalies in Rare Earth Element Patterns. Math. Geosci. 2022, 54, 47–70. [Google Scholar] [CrossRef]
- Knudsen, C. Pyrochlore group minerals from the Qaqarssuk carbonatite complex. Lanthanides. In Tantalum and Niobium; Möller, P., Cerný, P., Saupé, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 80–99. [Google Scholar] [CrossRef]
- Anderson, T. Evolution of peralkaline calcite carbonatite magma in the Fen Complex, Southeast Norway. Lithos 1988, 22, 99–112. [Google Scholar] [CrossRef]
- Wolfe, J.A. Crystallization of nepheline syenite in a subvolcanic magma system: Tenerife, Canary Islands. Lithos 1987, 20, 207–223. [Google Scholar] [CrossRef]
- Woolley, A.R.; Platt, R.G. The mineralogy of nepheline syenite complexes from the northern part of the Chilwa province Malawi. Miner. Mag. 1986, 50, 597–610. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Qin, K.; Mao, Y.; Tang, D.; Wang, F.; Evans, N.J.; Zhou, Q. Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation. Minerals 2022, 12, 785. https://doi.org/10.3390/min12070785
Sun Z, Qin K, Mao Y, Tang D, Wang F, Evans NJ, Zhou Q. Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation. Minerals. 2022; 12(7):785. https://doi.org/10.3390/min12070785
Chicago/Turabian StyleSun, Zhenghao, Kezhang Qin, Yajing Mao, Dongmei Tang, Fangyue Wang, Noreen J. Evans, and Qifeng Zhou. 2022. "Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation" Minerals 12, no. 7: 785. https://doi.org/10.3390/min12070785
APA StyleSun, Z., Qin, K., Mao, Y., Tang, D., Wang, F., Evans, N. J., & Zhou, Q. (2022). Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation. Minerals, 12(7), 785. https://doi.org/10.3390/min12070785