Experiments on Distribution of Divalent Metal Cations between Olivine Solid Solutions and Aqueous Chloride Solutions at 700 °C and 100 MPa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Solid Starting Materials
2.3. Liquid Starting Materials
3. Results
3.1. Solid Products
3.2. Liquid Products
4. Discussions
4.1. Ion-Exchange Reaction and Aqueous Neutral Species Concentration
4.2. Distribution Coefficient and PC–IR Diagram
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldschmidt, V.M. The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc. 1937, 140, 655–673. [Google Scholar] [CrossRef]
- Blundy, J.; Wood, B. Partitioning of trace elements between crystals and melts. Earth Planet. Sci. Lett. 2003, 210, 383–397. [Google Scholar] [CrossRef]
- Matsui, Y.; Onuma, N.; Nagasawa, H.; Higuchi, H.; Banno, S. Crystal structure control in trace element partitioning between crystal and magma. Bull. Soc. Franç. Minéral. Cristal. 1977, 100, 315–324. [Google Scholar]
- Blundy, J.; Wood, B. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 1994, 372, 452–454. [Google Scholar] [CrossRef]
- Wood, B.J.; Blundy, J.D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib. Mineral. Petrol. 1997, 129, 166–181. [Google Scholar] [CrossRef]
- Brice, J.C. Some thermodynamic aspects of the growth of strained crystals. J. Cryst. Growth 1975, 28, 249–253. [Google Scholar] [CrossRef]
- Katato, S. Physical basis of trace element partitioning: A review. Am. Mineral. 2016, 101, 2577–2593. [Google Scholar]
- Nekrylov, N.; Plechov, P.Y.; Gritsenko, Y.D.; Portnyagin, M.V.; Shcherbakov, V.D.; Aydov, V.A.; Garbe-Schönberg, D. Major and trace element composition of olivine from magnesian skarns and silicate marbles. Am. Mineral. 2021, 106, 206–216. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1984; Volume 12, pp. 109–148. [Google Scholar]
- Smyth, J.R.; Bish, D.L. Crystal Structures and Cation Sites of the Rock-Forming Minerals; Allen & Unwin: Boston, MA, USA, 1998; 332p. [Google Scholar]
- Brenan, J.M.; Watson, E.B. Partitioning of trace elements between olivine and aqueous fluids at high P-T conditions: Implications for the effect of fluid composition on trace-element transport. Earth Planet. Sci. Lett. 1991, 107, 672–688. [Google Scholar] [CrossRef]
- Uchida, E.; Hata, Y.; Uemura, H. Experiments on the simultaneous partitioning of divalent cations between pyrite or pyrrhotite and 2M aqueous chloride solution under supercritical conditions. Jpn. Mag. Miner. Petrol. Sci. 2017, 46, 124–134. (In Japanese) [Google Scholar]
- Uchida, E.; Izumi, Y.; Watanabe, H. Experiments on the simultaneous partitioning of divalent cations between arsenopyrite or cobaltite and hydrothermal chloride solution under supercritical conditions. Jpn. Mag. Miner. Petrol. Sci. 2019, 48, 103–112. (In Japanese) [Google Scholar] [CrossRef]
- Uchida, E.; Murasugi, M.; Okuda, S. Simultaneous partitioning of divalent metal ions between alabandite and 1 mol/L (Ni, Mg, Co, Zn, Fe)Cl2 aqueous solutions under supercritical conditions. Minerals 2020, 10, 696. [Google Scholar] [CrossRef]
- Uchida, E.; Sugino, Y.; Yokoyama, H. Experimental investigation of the simultaneous partitioning of divalent cations between löllingite or safflorite and 2 mol/L aqueous chloride solutions under supercritical conditions. J. Miner. Petrol. Sci. 2020, 115, 365–374. [Google Scholar] [CrossRef]
- Uchida, E.; Wakamatsu, K.; Takamatsu, N. Simultaneous partition experiment of divalent metal ions between sphalerite and 1 mol/L (Ni, Mg, Co, Fe, Mn)Cl2 aqueous solution under supercritical conditions. Minerals 2021, 11, 435. [Google Scholar] [CrossRef]
- Uchida, E.; Kitamura, Y.; Imai, N. Mixing properties of Fe-Mn-Mg olivine solid solution determined experimentally by ion exchange method. J. Min. Petr. Geol. 1997, 92, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Holland, H.D. Granites, solutions, and base metal deposits. Econ. Geol. 1972, 67, 281–301. [Google Scholar] [CrossRef]
- Frank, M.R.; Candela, P.A.; Piccoli, P.M. Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: An experimental study at 800 °C and 100 MPa. Geochim. Cosmochim. Acta 2003, 67, 1415–1427. [Google Scholar] [CrossRef]
- Uchida, E.; Goryozono, Y.; Naito, M.; Yamagami, M. Aqueous speciation of iron and manganese chlorides in supercritical hydrothermal solutions. Geochem. J. 1995, 29, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Frantz, J.D.; Marshall, W.L. Electrical conductances and ionization constants of calcium chloride and magnesium chloride in aqueous solutions at temperatures to 600 °C and pressures to 4000 bars. Am. J. Sci. 1982, 282, 1666–1693. [Google Scholar] [CrossRef]
- Uchida, E.; Goryozono, Y.; Naito, M. Aqueous speciation of magnesium, strontium, nickel and cobalt chlorides in hydrothermal solutions at 600 °C and 1 kbar. Geochem. J. 1996, 30, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Uchida, E.; Tsutsui, K. Cation leaching from the basalt JB-1a by 2M NaCl hydrothermal solutions. Resour. Geol. 2000, 50, 93–102. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Revised values of effective ionic radii. Acta Crystallogr. 1970, 26, 1046–1048. [Google Scholar] [CrossRef]
- Gaines, R.V.; Skinner, H.C.W.; Foord, E.E.; Mason, B.; Rosenzweig, A.R. Dana’s New Mineralogy, 8th ed.; John Willey & Sons: New York, NY, USA, 1997; 1819p. [Google Scholar]
- Emsley, J. The Elements, 3rd ed.; Clarendon Press: Oxford, UK, 1998; 292p. [Google Scholar]
Run No. | Duration | Temperature | Solid Starting Material | Fluid Starting Material |
---|---|---|---|---|
Days | °C | mg | µL | |
Fo100-2 | 5 | 700 | 30.0 | 30 *1 |
Fo100-3 | 5 | 700 | 30.1 | 30 *1 |
Fo100-4 | 5 | 700 | 30.1 | 30 *1 |
Fo75Fa25-7 | 5 | 700 | 29.9 | 30 *2 |
Fo75Fa25-8 | 5 | 700 | 29.9 | 30 *2 |
Fo75Fa25-10 | 5 | 700 | 30.1 | 30 *2 |
Fo50Fa50-3 | 5 | 700 | 29.5 | 30 *2 |
Fo50Fa50-4 | 5 | 700 | 30.0 | 30 *2 |
Fo50Fa50-5 | 5 | 700 | 30.0 | 30 *2 |
Fo25Fa75-1 | 5 | 700 | 29.7 | 30 *2 |
Fo25Fa75-2 | 5 | 700 | 29.7 | 30 *2 |
Fo25Fa75-3 | 5 | 700 | 29.8 | 30 *2 |
Fo25Fa75-4 | 5 | 700 | 29.8 | 30 *2 |
Fa100-6 | 5 | 700 | 29.4 | 30 *3 |
Fa100-8 | 5 | 700 | 30.2 | 30 *3 |
Fa100-12 | 5 | 700 | 29.5 | 30 *3 |
Run No. | Mg | Mn | Fe | Co | Ni | Zn | |
---|---|---|---|---|---|---|---|
Fo100-2 | Solid 1 | 0.9676 | 0.0059 | 0.0058 | 0.0119 | 0.0076 | 0.0012 |
Liquid (Meaq) 2 | 0.4793 | 0.1995 | 0.0388 | 0.0370 | 0.0015 | 0.2439 | |
Liquid (MeCl2aq) 3 | 0.4492 | 0.1844 | 0.0375 | 0.0352 | 0.0015 | 0.2320 | |
log KDN 4 | 0.0000 | −1.8277 | −1.1465 | −0.8048 | 0.3707 | −2.6064 | |
Fo100-3 | Solid 1 | 0.9604 | 0.0072 | 0.0067 | 0.0148 | 0.0093 | 0.0017 |
Liquid (Meaq) 2 | 0.4631 | 0.2011 | 0.0429 | 0.0420 | 0.0013 | 0.2495 | |
Liquid (MeCl2aq) 3 | 0.4333 | 0.1865 | 0.0416 | 0.0400 | 0.0013 | 0.2378 | |
log KDN 4 | 0.0000 | −1.7577 | −1.1408 | −0.7783 | 0.4971 | −2.5043 | |
Fo100-5 | Solid 1 | 0.9696 | 0.0054 | 0.0052 | 0.0116 | 0.0070 | 0.0012 |
Liquid (Meaq) 2 | 0.4714 | 0.1998 | 0.0408 | 0.0413 | 0.0014 | 0.2453 | |
Liquid (MeCl2aq) 3 | 0.4415 | 0.1865 | 0.0416 | 0.0400 | 0.0013 | 0.2378 | |
log KDN 4 | 0.0000 | −1.8788 | −1.2443 | −0.8804 | 0.3779 | −2.6268 | |
Fo75Fa25-7 | Solid 1 | 0.7538 | 0.0187 | 0.2017 | 0.0120 | 0.0092 | 0.0046 |
Liquid (Meaq) 2 | 0.1722 | 0.1416 | 0.4023 | 0.0087 | 0.0008 | 0.2745 | |
Liquid (MeCl2aq) 3 | 0.1594 | 0.1379 | 0.3981 | 0.0085 | 0.0007 | 0.2699 | |
log KDN 4 | 0.0000 | −1.5416 | −0.9701 | −0.5264 | 0.3876 | −2.4436 | |
Fo75Fa25-8 | Solid 1 | 0.7434 | 0.0159 | 0.2141 | 0.0133 | 0.0095 | 0.0038 |
Liquid (Meaq) 2 | 0.1571 | 0.1441 | 0.4181 | 0.0086 | 0.0003 | 0.2719 | |
Liquid (MeCl2aq) 3 | 0.1452 | 0.1406 | 0.4140 | 0.0084 | 0.0003 | 0.2677 | |
log KDN 4 | 0.0000 | −1.6563 | −0.9956 | −0.5122 | 0.8101 | −2.5593 | |
Fo75Fa25-10 | Solid 1 | 0.7659 | 0.0166 | 0.1941 | 0.0119 | 0.0087 | 0.0028 |
Liquid(Meaq) 2 | 0.1598 | 0.1524 | 0.3987 | 0.0077 | 0.0004 | 0.2810 | |
Liquid(MeCl2aq) 3 | 0.1513 | 0.1523 | 0.4045 | 0.0078 | 0.0008 | 0.2834 | |
log KDN 4 | 0.0000 | −1.6661 | −1.0233 | −0.5222 | 0.3513 | −2.7175 | |
Fo50Fa50-3 | Solid 1 | 0.5680 | 0.0211 | 0.3821 | 0.0123 | 0.0101 | 0.0064 |
Liquid (Meaq) 2 | 0.0958 | 0.1088 | 0.5435 | 0.0070 | 0.0006 | 0.2444 | |
Liquid (MeCl2aq) 3 | 0.0881 | 0.1070 | 0.5401 | 0.0069 | 0.0006 | 0.2419 | |
log KDN 4 | 0.0000 | −1.5138 | −0.9597 | −0.5573 | 0.4084 | −2.3885 | |
Fo50Fa50-4 | Solid 1 | 0.5318 | 0.0225 | 0.4147 | 0.0136 | 0.0110 | 0.0064 |
Liquid(Meaq) 2 | 0.1084 | 0.0944 | 0.5889 | 0.0061 | 0.0011 | 0.2010 | |
Liquid(MeCl2aq) 3 | 0.1002 | 0.0928 | 0.5848 | 0.0061 | 0.0011 | 0.1987 | |
log KDN 4 | 0.0000 | −1.3400 | −0.8741 | −0.3751 | 0.2840 | −2.2156 | |
Fo50Fa50-5 | Solid 1 | 0.5369 | 0.0212 | 0.4159 | 0.0120 | 0.0089 | 0.0052 |
Liquid (Meaq) 2 | 0.0900 | 0.1055 | 0.5447 | 0.0051 | 0.0003 | 0.2544 | |
Liquid (MeCl2aq) 3 | 0.0827 | 0.1039 | 0.5414 | 0.0050 | 0.0003 | 0.2520 | |
log KDN 4 | 0.0000 | −1.5037 | −0.9271 | −0.4370 | 0.6745 | −2.4992 | |
Fo25Fa75-1 | Solid 1 | 0.2702 | 0.0275 | 0.6702 | 0.0146 | 0.0093 | 0.0083 |
Liquid (Meaq) 2 | 0.0435 | 0.0943 | 0.6109 | 0.0060 | 0.0008 | 0.2445 | |
Liquid (MeCl2aq) 3 | 0.0393 | 0.0935 | 0.6088 | 0.0060 | 0.0008 | 0.2432 | |
log KDN 4 | 0.0000 | −1.3699 | −0.7957 | −0.4486 | 0.2097 | −2.3055 | |
Fo25Fa75-2 | Solid 1 | 0.2869 | 0.0315 | 0.6456 | 0.0164 | 0.0112 | 0.0084 |
Liquid (Meaq) 2 | 0.0467 | 0.1010 | 0.6601 | 0.0088 | 0.0008 | 0.1826 | |
Liquid (MeCl2aq) 3 | 0.0423 | 0.1001 | 0.6577 | 0.0088 | 0.0008 | 0.1816 | |
log KDN 4 | 0.0000 | −1.3344 | −0.8396 | −0.5590 | 0.3249 | −2.1661 | |
Fo25Fa75-3 | Solid 1 | 0.2973 | 0.0345 | 0.6250 | 0.0195 | 0.0146 | 0.0092 |
Liquid (Meaq) 2 | 0.0418 | 0.1107 | 0.5901 | 0.0092 | 0.0008 | 0.2473 | |
Liquid (MeCl2aq) 3 | 0.0377 | 0.1098 | 0.5882 | 0.0092 | 0.0008 | 0.2461 | |
log KDN 4 | 0.0000 | −1.4003 | −0.8707 | −0.5709 | 0.3647 | −2.3226 | |
Fo25Fa75-4 | Solid 1 | 0.2557 | 0.0263 | 0.6876 | 0.0133 | 0.0101 | 0.0070 |
Liquid (Meaq) 2 | 0.0435 | 0.0806 | 0.6365 | 0.0052 | 0.0006 | 0.2336 | |
Liquid (MeCl2aq) 3 | 0.0393 | 0.0799 | 0.6344 | 0.0052 | 0.0006 | 0.2323 | |
log KDN 4 | 0.0000 | −1.2963 | −0.7780 | −0.4078 | 0.4368 | −2.3335 | |
Fa100-6 | Solid 1 | 0.0119 | 0.0259 | 0.9350 | 0.0135 | 0.0069 | 0.0068 |
Liquid (Meaq) 2 | 0.0020 | 0.0634 | 0.7320 | 0.0041 | 0.0001 | 0.1983 | |
Liquid (MeCl2aq) 3 | 0.0015 | 0.0633 | 0.7317 | 0.0041 | 0.0001 | 0.1982 | |
log KDN 4 | 0.0000 | −1.2861 | −0.7919 | −0.3806 | 0.8086 | −2.3642 | |
Fa100-8 | Solid 1 | 0.0408 | 0.0472 | 0.8694 | 0.0227 | 0.0109 | 0.0091 |
Liquid (Meaq) 2 | 0.0080 | 0.1318 | 0.6387 | 0.0091 | 0.0005 | 0.2119 | |
Liquid (MeCl2aq) 3 | 0.0067 | 0.1314 | 0.6381 | 0.0091 | 0.0005 | 0.2116 | |
log KDN 4 | 0.0000 | −1.2322 | −0.6529 | −0.3915 | 0.5545 | −2.1544 | |
Fa100-12 | Solid 1 | 0.0142 | 0.0291 | 0.9255 | 0.0150 | 0.0063 | 0.0099 |
Liquid (Meaq) 2 | 0.0030 | 0.0682 | 0.7364 | 0.0059 | 0.0003 | 0.1862 | |
Liquid (MeCl2aq) 3 | 0.0023 | 0.0637 | 0.7649 | 0.0053 | 0.0003 | 0.1624 | |
log KDN 4 | 0.0000 | −1.1823 | −0.7592 | −0.3936 | 0.4448 | −2.0566 |
Reaction | log Ki |
---|---|
MgCl−aq = Mg2+aq + Cl−aq | −10.37 |
MgCl20aq = MgCl−aq + Cl−aq | −6.01 |
NiCl3−aq = NiCl20aq + Cl−aq | −2.1 |
CoCl3−aq = CoCl20aq + Cl−aq | −2.7 |
ZnCl3−aq = ZnCl20aq + Cl−aq | −2.7 |
FeCl3−aq = FeCl20aq + Cl−aq | −2.5 |
MnCl3−aq = MnCl20aq + Cl−aq | −2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchida, E.; Ohashi, M. Experiments on Distribution of Divalent Metal Cations between Olivine Solid Solutions and Aqueous Chloride Solutions at 700 °C and 100 MPa. Minerals 2022, 12, 881. https://doi.org/10.3390/min12070881
Uchida E, Ohashi M. Experiments on Distribution of Divalent Metal Cations between Olivine Solid Solutions and Aqueous Chloride Solutions at 700 °C and 100 MPa. Minerals. 2022; 12(7):881. https://doi.org/10.3390/min12070881
Chicago/Turabian StyleUchida, Etsuo, and Masaki Ohashi. 2022. "Experiments on Distribution of Divalent Metal Cations between Olivine Solid Solutions and Aqueous Chloride Solutions at 700 °C and 100 MPa" Minerals 12, no. 7: 881. https://doi.org/10.3390/min12070881
APA StyleUchida, E., & Ohashi, M. (2022). Experiments on Distribution of Divalent Metal Cations between Olivine Solid Solutions and Aqueous Chloride Solutions at 700 °C and 100 MPa. Minerals, 12(7), 881. https://doi.org/10.3390/min12070881