Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anatase
2.2. Experimental
Parameter | 4 nm | 20 nm | 40 nm |
---|---|---|---|
N2-BET surface area (m2/g) | 300 ± 0.4 | 66.4 ± 0.3 | 44.0 ± 0.3 |
Approximate mass of anatase per titration (g) 4 | 0.04 | 0.22 | 0.32 |
pHznpc | 6.42 ± 0.16 | 6.42 ± 0.43 | 6.22 ± 0.16 |
log KH1 | 6.82 | 6.82 | 6.62 |
log KH2 | 5.99 | 5.99 | 5.75 |
Fractional charge on ≡TiOH | −0.31 | −0.31 | −0.31 |
Fractional charge on ≡Ti2O | −0.68 | −0.68 | −0.67 |
Ti–O bond length ≡TiOH–0.3 | 1.94 Å | 1.94 Å | 1.93 Å |
Ti–O bond length ≡Ti2O–0.7 | 1.95 Å | 1.95 Å | 1.95 Å |
2.3. Molecular Modeling
2.4. Surface Complexation Modeling
3. Results
3.1. Proton Adsorption Titrations
3.2. Density Functional Theory Calculations
3.3. Surface Complexation Modeling Framework
Electrolyte Media | Particle Size | C1 | Inner-sphere log K | Inner-Sphere Complex | CD | C2 | Outer-Sphere log K ≡ TiOH–0.3⋯M+ | Outer-Sphere log K ≡ Ti2O–0.7⋯M+ | Outer-sphere log K ≡ TiOH2 +0.7⋯A– | Outer-Sphere log K ≡ Ti2OH+0.3⋯A– | CS | MSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LiCl | 4 | 0.9 ± 0.2 | −0.5 ± 0.6 | Bidentate, terminal | 0.46 ± 0.71 | 3.9 ± 4.6 | −2.0 | −0.31 ± 0.21 | −1.8 | −0.4 ± 0.2 | 0.73 | 5.15 |
LiCl | 20 | 1.2 ± 0.2 | −0.45 ± 0.6 | Bidentate, terminal | 0.46 ± 0.64 | 3.0 ± 1.5 | −2.0 | −0.31 ± 0.25 | −1.8 | −0.5 ± 0.3 | 0.86 | 6.17 |
LiCl | 40 | 1.5 ± 0.3 | −0.5 ± 0.7 | Bidentate, terminal | 0.50 ± 0.66 | 3.0 ± 1.4 | −2.0 | −1.50 ± 1.86 | −1.8 | −0.2 ± 0.2 | 1.00 | 5.19 |
NaCl | 4 | 0.9 ± 0.2 | −1.3 ± 0.7 | Bidentate, bridged | 0.36 ± 0.59 | 3.9 ± 3.3 | −2.0 | −0.11 ± 0.08 | −1.8 | −0.2 ± 0.09 | 0.73 | 4.10 |
NaCl | 20 | 1.1 ± 0.1 | −1.3 ± 0.4 | Bidentate, bridged | 0.36 ± 0.26 | 3.9 ± 1.2 | −2.0 | −0.11 ± 0.07 | −1.8 | −0.2 ± 0.1 | 0.86 | 4.89 |
NaCl | 40 | 1.3 ± 0.2 | −1.3 ± 1.0 | Bidentate, bridged | 0.36 ± 0.63 | 3.9 ± 1.8 | −2.0 | −0.11 ± 0.13 | −1.8 | −0.2 ± 0.1 | 0.97 | 4.36 |
NaTr | 4 | 0.9 ± 0.3 | −1.3 ± 2.8 | Bidentate, bridged | 0.36 ± 1.9 | 3.9 ± 7.8 | −2.0 | −0.11 ± 0.26 | −1.8 | −1.3 ± 2.8 | 0.73 | 5.47 |
NaTr | 20 | 1.1 ± 0.2 | −1.3 ± 2.1 | Bidentate, bridged | 0.36 ± 1.3 | 3.9 ± 4.1 | −2.0 | −0.11 ± 0.28 | −1.8 | −0.7 ± 0.9 | 0.86 | 5.65 |
NaTr | 40 | 1.2 ± 0.4 | −1.3 ± 2.4 | Bidentate, bridged | 0.36 ± 1.4 | 3.9 ± 4.2 | −2.0 | −0.11 ± 0.31 | −1.8 | −0.5 ± 0.4 | 0.92 | 6.02 |
KCl | 4 | 0.9 ± 0.4 | −1.2 ± 2.1 | Tetradentate | 0.55 ± 2.7 | 3.9 ± 8.1 | −2.0 | −0.11 ± 0.12 | −1.8 | −0.5 ± 0.2 | 0.73 | 4.83 |
KCl | 20 | 1.3 ± 0.5 | −1.3 ± 2.0 | Tetradentate | 0.55 ± 2.3 | 3.9 ± 4.8 | −2.0 | −0.11 ± 0.10 | −1.8 | −0.6 ± 0.2 | 0.97 | 4.81 |
KCl | 40 | 1.3 ± 0.3 | −1.3 ± 1.6 | Tetradentate | 0.50 ± 1.8 | 3.9 ± 3.2 | −2.0 | −0.11 ± 0.08 | −1.8 | −0.3 ± 0.1 | 0.97 | 5.53 |
RbCl | 4 | 0.9 ± 2.4 | −2.1 ± 10 | Tetradentate | 0.50 ± 5.5 | 3.9 ± 45 | −2.0 | −0.11 ± 0.17 | −1.8 | −0.5 ± 0.2 | 0.73 | 5.37 |
RbCl | 20 | 1.1 ± 3.0 | −1.8 ± 7.8 | Tetradentate | 0.50 ± 3.3 | 3.9 ± 38 | −2.0 | −0.11 ± 0.24 | −1.8 | −0.5 ± 0.3 | 0.86 | 5.21 |
RbCl | 40 | 1.1 ± 1.7 | −1.8 ± 4.6 | Tetradentate | 0.50 ± 1.8 | 3.9 ± 21 | −2.0 | −0.11 ± 0.16 | −1.8 | −0.1 ± 0.1 | 0.86 | 5.14 |
3.4. Constrained Surface Complexation Modeling
4. Discussion
Application of the Surface Complexation Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gmür, T.A.; Goel, A.; Brown, M.A. Quantifying specific ion effects on the surface potential and charge density at silica nanoparticle—Aqueous electrolyte interfaces. J. Phys. Chem. C 2016, 120, 16617–16625. [Google Scholar] [CrossRef]
- Hiemstra, T.; Van Riemsdijk, W. Physical chemical interpretation of primary charging behaviour of metal (hydr) oxides. Colloids Surf. 1991, 59, 7–25. [Google Scholar] [CrossRef]
- Rietra, R.P.; Hiemstra, T.; van Riemsdijk, W.H. The relationship between molecular structure and ion adsorption on variable charge minerals. Geochim. Cosmochim. Acta 1999, 63, 3009–3015. [Google Scholar] [CrossRef]
- Dove, P.M.; Craven, C.M. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochim. Cosmochim. Acta 2005, 69, 4963–4970. [Google Scholar] [CrossRef]
- Allen, N.; Machesky, M.L.; Wesolowski, D.J.; Kabengi, N. Calorimetric study of alkali and alkaline-earth cation adsorption and exchange at the quartz-solution interface. J. Colloid Interface Sci. 2017, 504, 538–548. [Google Scholar] [CrossRef]
- Pfeiffer-Laplaud, M.; Gaigeot, M.-P. Adsorption of singly charged ions at the hydroxylated (0001) α-quartz/water interface. J. Phys. Chem. C 2016, 120, 4866–4880. [Google Scholar] [CrossRef]
- Dishon, M.; Zohar, O.; Sivan, U. From repulsion to attraction and back to repulsion: The effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution. Langmuir 2009, 25, 2831–2836. [Google Scholar] [CrossRef] [PubMed]
- Dishon, M.; Zohar, O.; Sivan, U. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes. Langmuir 2011, 27, 12977–12984. [Google Scholar] [CrossRef]
- Flores, S.C.; Kherb, J.; Konelick, N.; Chen, X.; Cremer, P.S. The effects of hofmeister cations at negatively charged hydrophilic surfaces. J. Phys. Chem. C 2012, 116, 5730–5734. [Google Scholar] [CrossRef]
- Zhang, Z.; Fenter, P.; Cheng, L.; Sturchio, N.C.; Bedzyk, M.J.; Předota, M.; Bandura, A.; Kubicki, J.D.; Lvov, S.N.; Cummings, P.T.; et al. Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties. Langmuir 2004, 20, 4954–4969. [Google Scholar] [CrossRef]
- Předota, M.; Zhang, Z.; Fenter, P.; Wesolowski, D.J.; Cummings, P.T. Electric double layer at the rutile (110) surface. 2. adsorption of ions from molecular dynamics and X-ray experiments. J. Phys. Chem. B 2004, 108, 12061–12072. [Google Scholar] [CrossRef]
- Hawkins, T.; Allen, N.; Machesky, M.L.; Wesolowski, D.J.; Kabengi, N. Ion exchange thermodynamics at the rutile-water interface: Flow microcalorimetric measurements and surface complexation modeling of Na–K–Rb–Cl–NO3 adsorption. Langmuir 2017, 33, 4934–4941. [Google Scholar] [CrossRef] [PubMed]
- Lützenkirchen, J. Specific ion effects at two single-crystal planes of sapphire. Langmuir 2013, 29, 7726–7734. [Google Scholar] [CrossRef] [PubMed]
- Sverjensky, D.A. Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M+L−) electrolytes. Geochim. Cosmochim. Acta 2005, 69, 225–257. [Google Scholar] [CrossRef]
- Ridley, M.K.; Hiemstra, T.; van Riemsdijk, W.H.; Machesky, M.L. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model. Geochim. Cosmochim. Acta 2009, 73, 1841–1856. [Google Scholar] [CrossRef]
- Abbas, Z.; Labbez, C.; Nordholm, S.; Ahlberg, E. Size-dependent surface charging of nanoparticles. J. Phys. Chem. C 2008, 112, 5715–5723. [Google Scholar] [CrossRef]
- Barnard, A.; Zapol, P. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 2004, 121, 4276–4283. [Google Scholar] [CrossRef]
- Engates, K.E.; Shipley, H.J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 2010, 18, 386–395. [Google Scholar] [CrossRef]
- Gribb, A.A.; Banfield, J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 1997, 82, 717–728. [Google Scholar] [CrossRef]
- Vayssieres, L. On the effect of nanoparticle size on water-oxide interfacial chemistry. J. Phys. Chem. C 2009, 113, 4733–4736. [Google Scholar] [CrossRef]
- Hiemstra, T.; Van Riemsdijk, W.H. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta 2009, 73, 4423–4436. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2010, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D.R.; Brinker, J.; Keller, A.A. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS ONE 2013, 8, e81239. [Google Scholar] [CrossRef] [Green Version]
- Ridley, M.K.; Hackley, V.A.; Machesky, M.L. Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 2006, 22, 10972–10982. [Google Scholar] [CrossRef] [PubMed]
- Ridley, M.K.; Machesky, M.L.; Kubicki, J.D. A comparison of the reactivity at the solid-solution interface of nano- and micro-crystalline TiO2 phases. In Proceedings of the Goldschmidt Conference, Prague, Czech Republic, 14–19 August 2011. [Google Scholar]
- Ridley, M.K.; Machesky, M.L.; Kubicki, J.D. Anatase nanoparticle surface reactivity in NaCl media: A CD–MUSIC model interpretation of combined experimental and DFT studies. Langmuir 2013, 29, 8572–8583. [Google Scholar] [CrossRef]
- Ridley, M.K.; Machesky, M.L.; Kubicki, J.D. Experimental study of strontium adsorption on anatase nanoparticles as a function of size with a density functional theory and CD model interpretation. Langmuir 2014, 31, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.; Neale, G.H. The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis. J. Colloid Interface Sci. 1974, 47, 520–529. [Google Scholar] [CrossRef]
- Sprycha, R. Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface. J. Colloid Interface Sci. 1984, 102, 173–185. [Google Scholar] [CrossRef]
- Bourikas, K.; Hiemstra, T.; Van Riemsdijk, W.H. Ion pair formation and primary charging behaviour of titanium oxide (anatase and rutile). Langmuir 2001, 17, 749–756. [Google Scholar] [CrossRef]
- Schmidt, J.; Vogelsberger, W. Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J. Solut. Chem. 2009, 38, 1267–1282. [Google Scholar] [CrossRef]
- Shkol’Nikov, E.V. Thermodynamics of the dissolution of amorphous and polymorphic TiO2 modifications in acid and alkaline media. Russ. J. Phys. Chem. A 2016, 90, 567–571. [Google Scholar] [CrossRef]
- Dickson, A.; Wesolowski, D.; Palmer, D.A.; Mesmer, R. Dissociation Constant of Bisulfate Ion in Aqueous Sodium Chloride Solutions to 250 °C. J. Phys. Chem. 1990, 94, 7978–7985. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 2002, 100, 191–198. [Google Scholar] [CrossRef]
- Shock, E.L.; Koretsky, C.M. Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochim. Cosmochim. Acta 1993, 57, 4899–4922. [Google Scholar] [CrossRef]
- ICSD. Inorganic Crystal Structure Database; Fiz, F., Ed.; GmbH: Karlsruhe, Germany, 2005. [Google Scholar]
- Hiemstra, T.; Venema, P.; van Riemsdijk, W. Intrinsic proton affinity of reactive surface groups of metal (hydr) oxides: The bond valence principle. J. Colloid Interface Sci. 1996, 184, 680–692. [Google Scholar] [CrossRef]
- Machesky, M.L.; Wesolowski, D.J.; Palmer, D.A.; Ridley, M.K. On the temperature dependence of intrinsic surface protonation equilibrium constants: An extension of the revised MUSIC model. J. Colloid Interface Sci. 2001, 239, 314–327. [Google Scholar] [CrossRef]
- Barnard, A.S.; Zapol, P. Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys. Rev. B 2004, 70, 235403. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Hummer, D.R.; Kubicki, J.D.; Kent, P.R.C.; Post, J.E.; Heaney, P.J. Origin of nanoscale phase stability reversals in titanium oxide polymorphs. J. Phys. Chem. C 2009, 113, 4240–4245. [Google Scholar] [CrossRef]
- Akaike, H. An information criterion (AIC). Math. Sci. 1976, 14, 5–9. [Google Scholar]
- Ikeda, T.; Boero, M.; Terakura, K. Hydration of alkali ions from first principles molecular dynamics revisited. J. Chem. Phys. 2007, 126, 034501. [Google Scholar] [CrossRef] [Green Version]
- Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 1988, 88, 1475–1498. [Google Scholar] [CrossRef]
- Varma, S.; Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 2006, 124, 192–199. [Google Scholar] [CrossRef]
- Mähler, J.; Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2011, 51, 425–438. [Google Scholar] [CrossRef]
- Tunell, I.; Lim, C. Factors governing the metal coordination number in isolated group IA and IIA metal hydrates. Inorg. Chem. 2006, 45, 4811–4819. [Google Scholar] [CrossRef]
- Marcus, Y. Ion Properties; Marcel Dekker: New York, NY, USA, 1997; 259p. [Google Scholar]
- Bandura, A.V.; Kubicki, J.D. Derivation of force field parameters for TiO2–H2O systems from ab initio calculations. J. Phys. Chem. B 2003, 107, 11072–11081. [Google Scholar] [CrossRef]
- Hiemstra, T.; van Riemsdijk, W.H. On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 2006, 301, 1–18. [Google Scholar] [CrossRef]
- Ohshima, H.; Healy, T.W.; White, L.R. Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J. Colloid Interface Sci. 1982, 90, 17–26. [Google Scholar] [CrossRef]
- Van Riemsdijk, W.H.; Hiemstra, T. The CD-MUSIC model as a framework for interpreting ion adsorption on metal (hydr) oxide surfaces. In Surface Complexation; Luetzenkirchen, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 11, pp. 251–268. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridley, M.K.; Machesky, M.L.; Kubicki, J.D. Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies. Minerals 2022, 12, 907. https://doi.org/10.3390/min12070907
Ridley MK, Machesky ML, Kubicki JD. Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies. Minerals. 2022; 12(7):907. https://doi.org/10.3390/min12070907
Chicago/Turabian StyleRidley, Moira K., Michael L. Machesky, and James D. Kubicki. 2022. "Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies" Minerals 12, no. 7: 907. https://doi.org/10.3390/min12070907
APA StyleRidley, M. K., Machesky, M. L., & Kubicki, J. D. (2022). Ion and Particle Size Effects on the Surface Reactivity of Anatase Nanoparticle–Aqueous Electrolyte Interfaces: Experimental, Density Functional Theory, and Surface Complexation Modeling Studies. Minerals, 12(7), 907. https://doi.org/10.3390/min12070907