Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Illite and Boom Clay Samples
2.3. Sorption Edge on Illite
2.4. Sorption Isotherms on Illite
2.5. Sorption Isotherm on Boom Clay
3. Modelling
3.1. Modelling of Sn(IV) Sorption on Illite
3.2. Component Additivity Approach for Sn(IV) Sorption on Boom Clay
4. Results
4.1. Sorption of Sn(IV) on Illite in 0.017 M NaClO4
4.2. Sorption of Sn(IV) on Illite in 0.015 M NaHCO3
4.3. Sorption of Sn(IV) on Illite in 0.017 M NaClO4 in Presence of Dissolved Organic Matter
4.4. Sorption of Sn(IV) on Boom Clay in Clay Water and Component Additivity Approach
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Conditions | Equilibrium pH | Snlost (Tube Sorption) | Snlost (Centrifugation) |
---|---|---|---|
0.017 M NaClO4 | 8.46 | 0.31 | 0.06 |
8.39 | 0.36 | 0.03 | |
8.48 | 0.34 | 0.04 | |
3.01 | 0.70 | 0.50 | |
6.96 | 0.91 | 0.62 | |
11.97 | 0.14 | 0.05 | |
0.015 M NaHCO3 | 8.51 | −0.06 | 0.02 |
8.55 | −0.08 | 0.03 | |
8.55 | −0.07 | 0.01 | |
0.017 M NaClO4 + 4.5 ppmC DOM_NaClO4 | 8.38 | 0.08 | 0.02 |
8.36 | −0.01 | −0.01 | |
8.40 | −0.01 | 0.04 | |
SPRING | 8.44 | −0.11 | −0.15 |
8.41 | −0.08 | 0.01 | |
8.38 | −0.11 | −0.01 |
References
- Van Iseghem, P.; Marivoet, J. Safety Assessment of Geological Disposal of High-Level Radioactive Waste in Boom Clay: Relation with the Radionuclide Inventory. In Proceedings of the ICEM 09-12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, UK, 11–15 October 2009; Mallants, D., Ed.; ASME: New York, NY, USA; Volume 1, pp. 1–6. [Google Scholar]
- Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 2001, 65, 3041–3053. [Google Scholar] [CrossRef]
- Durce, D.; Salah, S.; Wang, L.; Maes, N. Complexation of Sn with Boom Clay natural organic matter under nuclear waste repository conditions. Appl. Geochem. 2020, 123, 104775. [Google Scholar] [CrossRef]
- Kedziorek, M.A.M.; Bourg, A.C.M.; Giffaut, E. Hydrogeochemistry of Sn(IV) in the context of radioactive waste disposal: Solubility and adsorption on MX-80 bentonite and Callovo-Oxfordian argilite. Phys. Chem. Earth Parts A/B/C 2007, 32, 568–572. [Google Scholar] [CrossRef]
- Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K. Chemical Thermodynamics 12. Chemical Thermodynamics of Tin; Perrone, J., Ed.; OECD Publications: Paris, France, 2012. [Google Scholar]
- Bradbury, M.H.; Baeyens, B. Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus Clay: A “bottom-up” approach. Appl. Clay Sci. 2011, 52, 27–33. [Google Scholar] [CrossRef]
- Marques Fernandes, M.; Vér, N.; Baeyens, B. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl. Geochem. 2015, 59, 189–199. [Google Scholar] [CrossRef]
- Montavon, G.; Lerouge, C.; David, K.; Ribet, S.; Hassan-Loni, Y.; Leferrec, M.; Bailly, C.; Robinet, J.; Grambow, B. Nickel Retention on Callovo-Oxfordian Clay: Applicability of Existing Adsorption Models for Dilute Systems to Real Compact Rock. Environ. Sci. Technol. 2020, 54, 12226–12234. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 2005, 69, 875–892. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. Sorption modelling on illite Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 2009, 73, 990–1003. [Google Scholar] [CrossRef]
- Frederickx, L. An Advanced Mineralogical Study of the Clay Mineral Fraction of the Boom Clay; KUL: Leuven, Belgium, 2020. [Google Scholar]
- De Craen, M.; Wang, L.; Van Geet, M.; Moors, H. Geochemistry of Boom Clay Pore Water at the Mol Site; SCK•CEN-BLG-990; SCK•CEN: Mol, Belgium, 2004; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:36097549 (accessed on 17 August 2022).
- Durce, D.; Bruggeman, C.; Maes, N.; Ravestyn, L.V.; Brabants, G. Partitioning of organic matter in Boom Clay: Leachable vs mobile organic matter. Appl. Geochem. 2015, 63, 169–181. [Google Scholar] [CrossRef]
- Salah, S.; Wang, L. Speciation and Solubility Calculations for Waste Relevant Radionuclides in Boom Clay; ER-0411; SCK•CEN: Mol, Belgium, 2017; Available online: https://publications.sckcen.be/portal/en/publications/speciation-and-solubility-calculations-for-waste-relevant-radionuclides-in-boom-clay(d53054f0-57f8-40ee-8726-85af0aa25a2a).html (accessed on 17 August 2022).
- Bruggeman, C.; Liu, D.J.; Maes, N. Influence of Boom Clay organic matter on the adsorption of Eu(3+) by illit-geochemical modelling using the component additivity approach. Radiochim. Acta 2010, 98, 597–605. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: Modelling. J. Contam. Hydrol. 1997, 27, 223–248. [Google Scholar] [CrossRef]
- Dähn, R.; Baeyens, B.; Fernandes, M.M. Zn uptake by illite and argillaceous rocks. Geochim. Cosmochim. Acta 2021, 312, 180–193. [Google Scholar] [CrossRef]
- Montavon, G.; Ribet, S.; Hassan Lonia, Y.; Maiaa, F.; Baillya, C.; Davida, K.; Lerougeb, C.; Madéc, B.; Robinetc, J.C.; Grambowa, B. Uranium retention in a Callovo-Oxfordian clay rock formation: From laboratory-based models to in natura conditions. Chemosphere 2022, 299, 134307. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, C.; Salah, S. Americium Retention and Migration Behaviour in Boom Clay; ER-0396; SCK•CEN: Mol, Belgium, 2017; Available online: https://publications.sckcen.be/portal/en/publications/americium-retention-and-migration-behaviour-in-boom-clay(6a50fc9b-0119-487b-a834-2e459a2aea74).html (accessed on 17 August 2022).
- Takahashi, Y.; Minai, Y.; Ambe, S.; Makide, Y.; Ambe, F. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim. Cosmochim. Acta 1999, 63, 815–836. [Google Scholar] [CrossRef]
- Tipping, E. Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3–48. [Google Scholar] [CrossRef]
- Kaplan, D.I.; Serkiz, S.M.; Allison, J.D. Europium sorption to sediments in the presence of natural organic matter: A laboratory and modeling study. Appl. Geochem. 2010, 25, 224–232. [Google Scholar] [CrossRef]
- Warwick, P.; Lewis, T.; Evans, N.; Bryan, N.D. Sorption of selected radionuclides to clay in the presence of humic acid. In Proceedings of the 1st Annual Workshop Proceedings of the Integrated Project Fundamental Processes of Radionuclide Migration–6th EC FP IP FUNMIG, Saclay, France, 28 November–1 December 2005; Available online: https://hdl.handle.net/2134/3152 (accessed on 17 August 2022).
- Evans, N.; Khan, M.H.; Warwick, P.; Lewis, T.; Bryan, N.; Knight, L. Modelling the Influence of Humic Acid on the Sorption of Cadmium to Montmorillonite. In Proceedings of the 2nd Annual Workshop of the Integrated Project ‘Fundamental Processes of Radionuclide Migration’—6th EC FP IP FUNMIG, Stockholm, Sweden, 21–23 November 2006; Available online: http://www.skb.se/upload/publications/pdf/TR-07-05webb.pdf (accessed on 17 August 2022).
- Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; et al. Processes of Cation Migration in Clayrocks: Final Scientific Report of the CatClay EuropeanProject CEA-R-6410; CEA. 2015. Available online: https://hal-cea.archives-ouvertes.fr/cea-01223753 (accessed on 17 August 2022).
- Baeyens, B.; Bradbury, M.H. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. J. Contam. Hydrol. 1997, 27, 199–222. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. Experimental measurements and modeling of sorption competition on montmorillonite. Geochim. Cosmochim. Acta 2005, 69, 4187–4197. [Google Scholar] [CrossRef]
- Fernandes, M.M.; Baeyens, B. Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Appl. Geochem. 2019, 100, 190–202. [Google Scholar] [CrossRef]
- Soltermann, D.; Marques Fernandes, M.; Baeyens, B.; Miehé-Brendlé, J.; Dähn, R. Competitive Fe(II)–Zn(II) Uptake on a Synthetic Montmorillonite. Environ. Sci. Technol. 2014, 48, 190–198. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 3rd ed.; The Mineralogical Society: London, UK, 2013; 498p. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Grivé, M.; Duro, L.; Colàsa, E.; Giffautb, E. Thermodynamic data selection applied to radionuclides and chemotoxic elements: An overview of the ThermoChimie-TDB. Appl. Geochem. 2015, 55, 85–94. [Google Scholar] [CrossRef]
- Brown, P.; Curti, E.; Grambow, B. Chemical Thermodynamics 8. Chemical Thermodynamics of Zirconium; OECD Publications: Paris, France, 2008. [Google Scholar]
- Poeter, E.P.; Hill, M.C.; Lu, D.; Tiedeman, C.R.; Mehl, S.W. UCODE_2014, with New Capabilities to Define Parameters Unique to Predictions, Calculate Weights Using Simulated Values, Estimate Parameters with SVD, Evaluate Uncertainty with MCMC, and More. 2014. Available online:http://pubs.er.usgs.gov/publication/70159674 (accessed on 17 August 2022).
- Bradbury, M.H.; Baeyens, B. Sorption modelling on illite. Part II: Actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 2009, 73, 1004–1013. [Google Scholar] [CrossRef]
- Banik, N.L.; Marsac, R.; Lützenkirchen, J.; Diascorn, A.; Bender, K.; Marquardt, C.M.; Geckeis, H. Sorption and Redox Speciation of Plutonium at the Illite Surface. Environ. Sci. Technol. 2016, 50, 2092–2098. [Google Scholar] [CrossRef] [PubMed]
- Marsac, R.; Banik, N.L.; Lützenkirchen, J.; Diascorn, A.; Bender, K.; Marquardt, C.M.; Geckeisa, H. Sorption and redox speciation of plutonium at the illite surface under highly saline conditions. J. Colloid Interface Sci. 2017, 485, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Tipping, E.; Lofts, S.; Sonke, J.E. Humic Ion-Binding Model VII: A revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225–235. [Google Scholar] [CrossRef]
- Milne, C.J.; Kinniburgh, D.G.; van Riemsdijk, W.H.; Tipping, E. Generic NICA−Donnan Model Parameters for Metal-Ion Binding by Humic Substances. Environ. Sci. Technol. 2003, 37, 958–971. [Google Scholar] [CrossRef]
- Marsac, R.; Catrouillet, C.; Davranche, M.; Coz, M.B.; Briant, N.; Janot, N.; Otero-Fariña, A.; Groenenberg, J.; Pédrot, M.; Dia, A. Modeling rare earth elements binding to humic acids with model VII. Chem. Geol. 2021, 567, 120099. [Google Scholar] [CrossRef]
- Liu, D.J.; Bruggeman, C.; Maes, N. The influence of natural organic matter on the speciation and solubility of Eu in Boom Clay porewater. Radiochim. Acta 2008, 96, 711–720. [Google Scholar] [CrossRef]
- Weng, L.; Van Riemsdijk, W.H.; Koopal, L.K.; Hiemstra, T. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. J. Colloid Interface Sci. 2006, 302, 442–457. [Google Scholar] [CrossRef]
- Maes, N.; Bruggeman, C.; Govaerts, J.; Martens, E.; Salah, S.; van Gompel, M. A consistent phenomenological model for natural organic matter linked migration of Tc(IV), Cm(III), Np(IV), Pu(III/IV) and Pa(V) in the Boom Clay. Phys. Chem. Earth Parts A/B/C 2011, 36, 1590–1599. [Google Scholar] [CrossRef]
- Bruggeman, C.; Maes, N. Radionuclide Migration and Retention in Boom Clay; ER-0345; SCK•CEN: Mol, Belgium, 2017; Available online: https://publications.sckcen.be/portal/en/publications/radionuclide-migration-and-retention-in-boom-clay(84f52db2-e968-40a3-b5f2-79f7677e3fd6).html (accessed on 17 August 2022).
- Bryan, N.D.; Abrahamsen, L.; Evans, N.; Warwick, P.; Buckau, G.; Weng, L.; van Riemsdijk, W.H. The effects of humic substances on the transport of radionuclides: Recent improvements in the prediction of behaviour and the understanding of mechanisms. Appl. Geochem. 2012, 27, 378–389. [Google Scholar] [CrossRef]
- Reiller, P.E. Modelling metal–humic substances–surface systems: Reasons for success, failure and possible routes for peace of mind. Mineral. Mag. 2012, 76, 2643–2658. [Google Scholar] [CrossRef]
- Emerson, H.P.; Hickok, K.A.; Powell, B.A. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe2O3) colloids and Suwannee River fulvic acid. J. Environ. Radioact. 2016, 165, 168–181. [Google Scholar] [CrossRef]
- Fleury, G.; Del Nero, M.; Barillo, R. Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: Molecular-scale ESI-MS studies. Geochim. Cosmochim. Acta 2017, 196, 1–17. [Google Scholar] [CrossRef]
- Galindo, C.; Del Nero, M. Chemical fractionation of a terrestrial humic acid upon sorption on alumina by high resolution mass spectrometry. RSC Adv. 2015, 5, 73058–73067. [Google Scholar] [CrossRef]
- Galindo, C.; Del Nero, M. Molecular Level Description of the Sorptive Fractionation of a Fulvic Acid on Aluminum Oxide Using Electrospray Ionization Fourier Transform Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 7401–7408. [Google Scholar] [CrossRef]
Minerals | Concentration (wt% ± Spread) (1) |
---|---|
Plagioclase | 1.5 ± 0.5 |
Calcite | 0.7 ± 0.2 |
Pyrite | 1.5 ± 0.5 |
Anatase | 0.9 ± 0.1 |
K-feldspar | 6 ± 1 |
Quartz | 34.5 ± 7.5 |
SUM Non-Clay | 45 ± 9 |
Kaolinite | 8 ± 2 |
2:1 Al Clay | 35 ± 4 |
Chlorite | 1.5 ± 1.5 |
Muscovite | 10.5 ± 1.5 |
SUM Clay | 55 ± 9 |
Conditions | Sn(IV) Concentration Range (mol/L) | Solid/Liquid Ratio (g/L) (±2 SD) | Average pH Measured at 7 Days (±2 SD) |
---|---|---|---|
0.017 M NaClO4 | 3.3 × 10−9 to 4.2 × 10−7 | 0.10 ± 0.002, 0.51 ± 0.02 and 0.53 ± 0.02 | 8.56 ± 0.1 and 8.49 ± 0.04 |
0.017 M NaClO4 + 4.5 ppmC DOM_NaClO4 | 2.0 × 10−9 to 3.0 × 10−7 | 0.10 ± 0.02 and 0.46 ± 0.04 | 8.37 ± 0.06 |
0.015 M NaHCO3 | 1.7 × 10−9 to 3.0 × 10−7 | 0.09 ± 0.02 and 0.52 ± 0.02 | 8.66 ± 0.32 |
Protolysis | Bradbury and Baeyens [10] (1) | This Work (2) |
---|---|---|
log K = 4.0 ± 0.5 | ||
log K = 8.5 ± 0.5 | ||
log K = 4.0 ± 0.5 | ||
log K = −6.2 ± 0.5 | ||
log K = −10.5 ± 0.5 | ||
log K = −6.2 ± 0.5 | ||
Surface site capacity | ||
4 × 10–2 mol/kg | ||
4 × 10–2 mol/kg | ||
2 × 10–3 mol/kg | 1.0 [0.97–1.1] × 10–3 mol/kg |
Sn(IV) Hydrolysis | In Thermochimie V10a (1) | In Bradbury and Baeyens [10] (1) |
/ | log K1OH = 1.2 | |
/ | log K2OH = 1.7 | |
/ | log K3OH = 1.6 | |
log K4OH = 7.54 ± 0.69 | log K4OH = 0.4 | |
log K5OH = −1.06 ± 0.80 | log K5OH = −7.7 | |
log K6OH = −11.13 ± 0.76 | log K6OH = −18.4 |
Sn(IV) Surface Complexation and Aqueous Complexation | Literature Data | This Work (3) | |
---|---|---|---|
log K3 | 2.5 (1) | 9.4 [8.8–10.1] | |
log K4 | −5.7 (1) | 0.9 [0.7–1.4] | |
log K5 | / | 55.8 [55.7–56.1] | |
50.0 (2) | / | ||
46.0 (2) | / | ||
log K6 | / | 45.4 [45.2–46.0] | |
log K7 | / | 48.9 [48.5–49.4] | |
log K8 | / | 48.9 [48.5–49.4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durce, D.; Salah, S.; Van Laer, L.; Wang, L.; Maes, N.; Brassinnes, S. Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter. Minerals 2022, 12, 1078. https://doi.org/10.3390/min12091078
Durce D, Salah S, Van Laer L, Wang L, Maes N, Brassinnes S. Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter. Minerals. 2022; 12(9):1078. https://doi.org/10.3390/min12091078
Chicago/Turabian StyleDurce, Delphine, Sonia Salah, Liesbeth Van Laer, Lian Wang, Norbert Maes, and Stéphane Brassinnes. 2022. "Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter" Minerals 12, no. 9: 1078. https://doi.org/10.3390/min12091078
APA StyleDurce, D., Salah, S., Van Laer, L., Wang, L., Maes, N., & Brassinnes, S. (2022). Sn(IV) Sorption onto Illite and Boom Clay: Effect of Carbonate and Dissolved Organic Matter. Minerals, 12(9), 1078. https://doi.org/10.3390/min12091078