Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean
Abstract
:1. Introduction
2. Methods
3. Material
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chudaev, O.V. Distribution of clay minerals in flysch deposits of Eastern Kamchatka. Lithol. Miner. Resour. 1978, 1, 105–115. (In Russian) [Google Scholar]
- Markevich, P.V.; Chudaev, O.V. Composition of flish Sikhote-Alin and Kamchatka sandstands and paleotectonic conditions of its formation. Dokl. Acad. Sci. USSR 1979, 246, 428–431. (In Russian) [Google Scholar]
- Markevich, P. Geosynclinal Terrigenous Sedimentation in Eastern Asia in the Phanerozoic on the Example of Sikhote-Alin and Kamchatka; Nauka: Moscow, Russia, 1985; p. 117. (In Russian) [Google Scholar]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Miner. Soc.: London, UK, 1980; p. 495. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; p. 400. [Google Scholar]
- Drits, V.A.; Sakharov, B.A. X-ray structural analysis of mixed-layer minerals. In Tr. GIN; Nauka: Moscow, Russia, 1976; Volume 295, p. 256. (In Russian) [Google Scholar]
- Drits, V.A. Mixed-layer minerals: Diffraction methods and structural features. In Proceedings of the International Clay Conference, Denver, CO, USA, 28 July–2 August 1985; Schultz, L.G., van Olphen, H., Mampton, F.A., Eds.; Clay Miner. Soc.: Bloomington, IN, USA, 1987; pp. 33–45. [Google Scholar]
- Gusev, N. State Geological Map of the Russian Federation. Scale 1: 1,000,000, 3rd ed.; Far Eastern Series; VSEGEI: St. Petersburg, Russia, 2011. (In Russian) [Google Scholar]
- Mozherovsky, A.V. Practical Application of the Mineralogical Mapping Method for Stratigraphy of the Cretaceous Deposits of Southern Primorye (Russian Far East). Minerals 2021, 11, 840. [Google Scholar] [CrossRef]
- Mozherovsky, A.V. Authigenic minerals of paleozoic-cenozoic volcanogenic-sedimentary rocks in the Southern Primorye Region. Russ. J. Pac. Geol. 2021, 15, 583–601. [Google Scholar] [CrossRef]
- Syasko, A.; Vrzhosek, A.; Dubinsky, A.; Kononets, S.; Korotkiy, A.; Kutub-Zade, T.; Lyakh, I.; Nevolin, P.; Popov, V.; Rodionov, A.; et al. State Geological Map of the Russian Federation, Scale 1: 200,000. Sikhote-Alinskaya Series. Sheets K-52-XII, XVIII; Explanatory Letter; Moscow Branch of FSBI VSEGEI: Moscow, Russia, 2016; p. 241. (In Russian) [Google Scholar]
- Lelikov, E.P.; Markevich, V.S.; Terekhov, E.P. Lower Cretaceous and Paleogene deposits of the Yamato Upland (Sea of Japan). Dokl. Acad. Sci. USSR 1980, 253, 678–681. (In Russian) [Google Scholar]
- Bersenev, I.I.; Lelikov, E.P.; Bezverkhny, V.L.; Vashchenkova, N.G.; S’edin, V.T.; Terekhov, E.P.; Tsoy, I.B. Geology of the Sea of Japan Bottom; Far Eastern Branch of the USSR Academy of Sciences: Vladivostok, Russia, 1987; p. 140. (In Russian) [Google Scholar]
- Tsoy, I.B.; Terekhov, E.P.; Shastina, V.V.; Gorovaya, M.T.; Mozherovskii, A.V. Age of the Kotikovaya group in the Terpeniya Peninsula (Eastern Sakhalin). Stratigr. Geol. Correl. 2005, 6, 632–643. [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Gorovaya, M.T.; Tsoy, I.B.; Vashchenkova, N.G. Composition of the rocks of the Kotikovo group and the main stages in the late cretaceous-paleogene evolution of the Terpeniya Peninsula, Sakhalin Island. Russ. J. Pac. Geol. 2010, 3, 260–273. [Google Scholar] [CrossRef]
- Govorov, G.I. Geodynamics of Small-Kuril Paleoarc system after geochronological and petrochemical data. Dokl. Earth Sci. 2000, 4, 521–524. (In Russian) [Google Scholar]
- Govorov, G.I. Phanerozoic Magmatic Belts and Origin of the Okhotsk Sea Geoblock Structure; Dalnauka: Vladivostok, Russia, 2002; p. 198. (In Russian) [Google Scholar]
- Kulinich, R.G.; Karp, B.Y.; Lelikov, E.P.; Karnaukh, V.N.; Valitov, M.G.; Nikolaev, S.M.; Kolpashchikova, T.N.; Tsoi, I.B.; Baranov, B.V. Structural and Geological Characteristics of a «Seismic Gap» in the central part of the Kuril Island Arc. Russ. J. Pac. Geol. 2007, 1, 3–14. [Google Scholar] [CrossRef]
- Lelikov, E.P.; Tsoy, I.B.; Emel’yanova, T.A.; Terekhov, E.P.; Vashchenkova, N.G.; Vagina, N.K.; Smirnova, O.L.; Khudik, V.D. Geological Structure of the Submarine Vityaz Ridge within the Seismic Gap Area (Pacific Slope of the Kurile Island Arc). Russ. J. Pac. Geol. 2008, 2, 99–109. [Google Scholar] [CrossRef]
- Palechek, T.N.; Solov’ev, A.V.; Shapiro, M.N. Structure and age of Mesozoic sedimentary-volcanogenic deposits of the Palana Section (Western Kamchatka). Stratigr. Geol. Correl. 2003, 11, 261–277. [Google Scholar]
- Mozherovsky, A.V. Geology and stratigraphy of the Posiet Peninsula (South Primorye) from a mineralogical point of view. Bull. Kamchatka Reg. Assoc. Educ. Sci. Cent. Earth Sci. 2019, 3, 26–37. (In Russian) [Google Scholar]
- Mozherovsky, A.V.; Terekhov, E.P. Authigenic minerals in Early Cretaceous and Paleocene sedimentary rocks of the Yamato Ridge, East Sea. Geosci. J. 1998, 2, 148–159. [Google Scholar] [CrossRef]
- Mozherovsky, A.V.; Terekhov, E.P. Authigenic minerals of Meso-Cenozoic volcanic-sedimentary rocks of marginal seas bottom of the North-Western Pacific. Stand. Glob. J. Geol. Explor. Res. 2016, 3, 105–114. [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Tsoy, I.B.; Lelikov, E.P.; Vashchenkova, N.G.; Gorovaya, M.T. Late Mesozoic and Cenozoic volcanosedimentary complexes from the submarine Vityaz Ridge, the Island Arc slope of the Kuril-Kamchatka Trench, and its evolution. Russ. J. Pac. Geol. 2012, 3, 209–216. [Google Scholar] [CrossRef]
- Warr, L.N. Recommended abbreviations for the names of clay minerals and associated phases. Clay Miner. 2020, 55, 261–264. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Terekhov, E.P.; Mozherovsky, A.V.; Vashchenkova, N.G.; Barinov, N.N. Authigenic gypsum mineralization in the bottom rocks of the Sea of Japan and Okhotsk. New Data Miner. 2013, 48, 62–69. (In Russian) [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Barinov, N.N. Barites from the underwater Yamano Ridge (Japan Sea). Stand. Glob. J. Geol. Explor. Res. 2016, 4, 161–169. [Google Scholar]
- MacKenzie, R.C. (Ed.) Differential Thermal Analysis. Volume 1: Fundamental Aspects, 1st ed.; Academic Press: London, UK; New York, NY, USA, 1970; p. 804. [Google Scholar]
- Cuadros, J.; Fiore, S.; Huertas, F.J. Introduction to Mixed-Layer Clay Minerals. In Interstratified Clay Minerals: Origin, Characterization and Geochemical Significance; AIPEA Educational Series, Pub. No. 1; Fiore, S., Cuadros, J., Huertas, F.J., Eds.; Digilabs: Bari, Italy, 2010; p. 175. [Google Scholar]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Miner. 2006, 41, 863–877. [Google Scholar] [CrossRef]
- Guggenheim, S. Introduction to Mg-rich clay minerals: Structure and composition. In Magnesian Clays: Characterization, Origin and Applications; AIPEA Educational Series, Pub. No. 2; Pozo, M., Galán, E., Eds.; Digilabs: Bari, Italy, 2015; pp. 1–62. [Google Scholar]
- Drits, V.A.; Kossowskaya, A.G. Clay Minerals: Smectites, Mixed-Layer Silicates; Nauka: Moscow, Russia, 1990; p. 214. (In Russian) [Google Scholar]
- Gibbs, R.J. Clay mineral segregation in the marine environment. J. Sediment. Petrol. 1977, 47, 237–243. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1973; p. 644. [Google Scholar]
- Konta, Y. Phyllosilicates in the sediment-forming processes: Weathering, erosion, transportation, and deposition. Acta Geodyn. Geomater. 2009, 6, 13–43. [Google Scholar]
- Kossovskaya, A.G. Genetic types and paragenetic association of minerals of the corrensite groupe. In Proceedings of the International Clay Conference, Madrid, Spain, 23–30 June 1972; Serratosa, J.M., Sanchez, A., Eds.; Division de Ciencias, C.S.I.C.: Madrid, Spain, 1973; Volume 1, pp. 341–342. [Google Scholar]
- Golovneva, L.; Bugdaeva, E.; Volynets, E.; Sun, Y.; Zolina, A. Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia. Foss. Impr. 2021, 2, 231–255. [Google Scholar] [CrossRef]
- Iijima, A.; Utada, M. Present-day zeolitic diagenesis of the Neogene geosynclinal deposites in the Niigata oil field Japan. In Molecular Sieve Zeolites-I, Advances in Chemistry Series, 101; Flanigen, M., Sand, L.B., Eds.; American Chemical Society: Washington, DC, USA, 1971; pp. 342–349. [Google Scholar]
- Kimbara, K.; Sudo, T. Chloritic clay minerals in tuffa-ceous sandstones of the miocene Green Tuff Formation Yamata district, Ishicava Perfecture, Japan. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1973, 68, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Mehegan, J.M.; Robinson, P.T.; Delaney, J.R. Secondary mineralization and hydrothermal alteration in the Reydarfjordur drill core, Eastern Iceland. J. Geophys. Res. Solid Earth 1982, 87, 6511–6524. [Google Scholar] [CrossRef]
- Liu, X.; Hu, X.; Li, J. Cretaceous oceanic anoxic and oxic events. Chin. J. Nat. 2020, 4, 347–354, (In Chinese with English Abstract). [Google Scholar]
- Levitan, M.A.; Antonova, T.A.; Gelvi, T.N. Mesozoic-Cenozoic sedimentation in the Circum-Arctic Belt. 2. Cretaceous-Paleogene. Geochem. Int. 2015, 5, 411–429. [Google Scholar] [CrossRef]
- Aoyagy, K.; Kazama, T. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology 1980, 27, 179–188. [Google Scholar] [CrossRef]
- Kossovskaya, A.G.; Drits, V.A. Problems of crystal chemical and genetic classification of micaceous minerals of sedimentary rocks. In Epigenesis and Its Mineral Indicators; Nauka: Moscow, Russia, 1971; pp. 71–95. (In Russian) [Google Scholar]
- Hauff, P.L. Corrensite: Mineralogical Ambiguities and Geologic Significance. In Open-File Report 81-850; United States Department of the Interior Geological Survey: Washington, DC, USA, 1981; p. 45. [Google Scholar]
- Hazen, R.M.; Sverjensky, D.A.; Azzolini, D.; Bish, D.L.; Elmor, S.C.; Hinnov, L.; Milliken, R.E. Clay mineral evolution. Am. Mineral. 2013, 98, 2007–2029. [Google Scholar] [CrossRef]
Components | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 4) | (n = 4) | (n = 2) | (n = 2) | (n = 6) | (n = 2) | (n = 3) | (n = 3) | (n = 1) | (n = 3) | (n = 3) | (n = 6) | (n = 7) | (n = 10) | (n = 3) | (n = 3) | (n = 6) | (n = 6) | (n = 6) | |
FeO | 13.92 | 15.62 | 10.27 | 11.03 | 14.66 | 11.2 | 11.7 | 9.77 | 9.8 | 15.47 | 17.03 | 10.27 | 19.44 | 9.94 | 3.88 | 0.88 | 6.21 | 15.50 | 12.03 |
MgO | 6.24 | 5.44 | 2.09 | 5.06 | 9.23 | 1.74 | 1.23 | 3.52 | 1.90 | 5.55 | 9.69 | 16.03 | 10.47 | 20.77 | 23.47 | 2.78 | 1.90 | 7.16 | 3.65 |
CaO | 0.14 | 0.09 | 1.78 | 0.77 | 1.02 | 0.94 | 0.06 | 1.26 | 3.77 | 1.17 | 1.13 | 1.70 | 2.08 | 1.67 | 1.43 | 0.36 | 0.35 | 3.27 | 1.63 |
Na2O | 1.51 | 1.61 | 1.04 | 1.15 | 1.01 | 2.56 | 1.55 | 2.54 | 2.48 | 1.90 | 1.60 | 0.35 | 1.11 | 0.51 | 0.12 | 0.36 | 1.09 | 1.33 | 1.01 |
K2O | 1.90 | 2.55 | 4.17 | 2.74 | 1.81 | 3.16 | 3.57 | 2.54 | 0.93 | 1.90 | 1.60 | 2.62 | 0.95 | 0.33 | 0.64 | 0.09 | 5.14 | 1.24 | 2.02 |
Components | Southern Primorye | Underwater Vityaz Ridge | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
in wt% | Chl-Sme | Crr | Chl-Sme | Crr | |||||||
No | 4 | 18 | 84 | 85 | 128 | 176 | 178 | 181 | LV-41-19-1p | LV-41-16 | LV-41-15-8 |
SiO2 | 52.3 | 53.8 | 53.8 | 42.6 | 43.3 | 41.1 | 41 | 40.3 | 47.02 | 38.47 | 39.98 |
Al2O3 | 19.6 | 16.9 | 19.4 | 17 | 17.8 | 17.9 | 15.4 | 17.2 | 18.47 | 15.57 | 13.64 |
Fe2O3 tot | 11.7 | 9.8 | 9.4 | 19.2 | 17.8 | 18.2 | 15.9 | 17 | 10.5 | 19.55 | 18.09 |
TiO2 | 0.83 | 0.87 | 0.8 | 0.71 | 0.81 | 0.52 | 0.91 | 0.68 | 1.5 | 0.36 | 0.14 |
MnO | 0.08 | 0.16 | 0.15 | 0.15 | 0.18 | 0.07 | 0.11 | 0.07 | 0.05 | 0.182 | 0.062 |
MgO | 2.56 | 1.9 | 2.43 | 7.32 | 6.91 | 8.76 | 10.93 | 9.37 | 3.43 | 14.64 | 15.28 |
CaO | 0.11 | 3.77 | 1.07 | 0.91 | 1.54 | 0.83 | 1.6 | 0.97 | 1.21 | 0.25 | 0.14 |
Na2O | 1.08 | 2.48 | 1.65 | 2.01 | 2.05 | 1.29 | 2.07 | 1.43 | 0.92 | 1.19 | 0.66 |
K2O | 3.75 | 0.93 | 1.65 | 2.01 | 2.05 | 1.29 | 2.07 | 1.43 | 1.96 | 0.44 | 0.53 |
LOI | 6.62 | 8.47 | 7.44 | 9.09 | 9 | 8.77 | 8.68 | 11.14 | 14.96 | 10.05 | 11.66 |
∑summ | 98.63 | 99.08 | 97.79 | 101 | 101.4 | 98.73 | 98.67 | 99.59 | 100.02 | 100.702 | 100.182 |
Si | 3.57 | 3.70 | 3.67 | 3.06 | 3.08 | 2.99 | 3.01 | 2.98 | 3.46 | 2.81 | 2.96 |
Al | 1.58 | 1.37 | 1.56 | 1.44 | 1.49 | 1.53 | 1.33 | 1.50 | 1.60 | 1.34 | 1.19 |
Fe | 0.60 | 0.51 | 0.48 | 1.04 | 0.95 | 1.00 | 0.88 | 0.95 | 0.58 | 1.07 | 1.01 |
Ti | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.05 | 0.04 | 0.08 | 0.02 | 0.01 |
Mn | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
Mg | 0.26 | 0.19 | 0.25 | 0.78 | 0.73 | 0.95 | 1.20 | 1.03 | 0.38 | 1.59 | 1.69 |
Ca | 0.01 | 0.28 | 0.08 | 0.07 | 0.12 | 0.06 | 0.13 | 0.08 | 0.10 | 0.02 | 0.01 |
Na | 0.14 | 0.33 | 0.22 | 0.28 | 0.28 | 0.18 | 0.29 | 0.21 | 0.13 | 0.17 | 0.09 |
K | 0.33 | 0.08 | 0.14 | 0.18 | 0.19 | 0.12 | 0.19 | 0.14 | 0.18 | 0.04 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozherovsky, A.V. Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals 2022, 12, 909. https://doi.org/10.3390/min12070909
Mozherovsky AV. Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals. 2022; 12(7):909. https://doi.org/10.3390/min12070909
Chicago/Turabian StyleMozherovsky, Anatoly V. 2022. "Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean" Minerals 12, no. 7: 909. https://doi.org/10.3390/min12070909
APA StyleMozherovsky, A. V. (2022). Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals, 12(7), 909. https://doi.org/10.3390/min12070909