Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method
Abstract
:1. Introduction
2. Experimental Method
2.1. Basic Conditions
2.2. Physical Model
3. Test Result Analysis
3.1. Backfilling Mining
3.2. Backfill Mass Excavation
4. Displacement and Stress Analysis of Overlying Strata
4.1. Displacement Analysis of Overlying Strata in Backfill Mining
4.2. Displacement Analysis of Overlying Strata in Backfill Mass Excavation
4.3. Comprehensive Analysis of the Stress Field in Overlying Strata
5. Discussion
6. Conclusions
- (1)
- The loads from the overlying strata are transferred to the dense fill mass and the surrounding rock as backfill mining is employed, and the stress in the near-field area of the surrounding rock increases and stabilizes gradually. The backfill mass improves the stress distribution state and reduces the stress concentration of the surrounding rock, which is conducive to preventing the progressive damage of the overlying strata;
- (2)
- The displacement and movement range of the overlying strata steadily increases as the backfill is excavated. A large-scale collapse occurred in the roof of the goaf due to the exposed area being too large and exceeding its limit. The caving range along the inclined direction of the ore body is 105 m, the vertical caving height is roughly 25–45 m, and the surface subsidence value is about 0.8–1.2 m. It poses a considerable threat to the safety of underground mining and surface infrastructure;
- (3)
- The stress of the overlying strata is transferred toward the surrounding rock mass above and on both sides of the caving arch after roof caving. The backfill excavation significantly influences the surrounding rock stress field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheshpari, M. Failures in Backfilled Stopes and Barricades in Underground Mines. Electron. J. Geotech. Eng. 2015, 20, 191–212. [Google Scholar]
- Sheshpari, M. A Review of Underground Mine Backfilling Methods with Emphasis on Cemented Paste Backfill. Electron. J. Geotech. Eng. 2015, 20, 5183–5208. [Google Scholar]
- Zhang, J.; Zhang, Q.; Sun, Q.; Gao, R.; Germain, D.; Abro, S. Surface subsidence control theory and application to backfill coal mining technology. Environ. Earth Sci. 2015, 74, 1439–1448. [Google Scholar] [CrossRef]
- Chen, S.; Yin, D.; Cao, F.; Liu, Y.; Ren, K. An overview of integrated surface subsidence-reducing technology in mining areas of China. Nat. Hazards 2015, 81, 1129–1145. [Google Scholar] [CrossRef]
- Alehossein, H.; Shen, B.; Qin, Z. Backfill grouting for mining subsidence prevention. In Proceedings of the 2021 Resource Operators Conference, Wollongong, Australia, 10–12 February 2021. [Google Scholar]
- Qi, C.; Fourie, A. Numerical Investigation of the Stress Distribution in Backfilled Stopes Considering Creep Behaviour of Rock Mass. Rock Mech. Rock Eng. 2019, 52, 3353–3371. [Google Scholar] [CrossRef]
- Falaknaz, N.; Aubertin, M.; Li, L. Numerical investigation of the geomechanical response of adjacent backfilled stopes. Can. Geotech. J. 2015, 52, 1507–1525. [Google Scholar] [CrossRef]
- Aubertin, M.; Li, L.; Arnoldi, S.; Belem, T.; Bussière, B.; Benzaazoua, M.; Simon, R. Interaction between backfill and rock mass in narrow stopes. Soil Rock Am. 2003, 1, 1157–1164. [Google Scholar]
- Hassani, F.P.; Mortazavi, A.; Shabani, M. An investigation of mechanisms involved in backfill-rock mass behaviour in narrow vein mining. J. S. Afr. Inst. Min. Metall. 2008, 108, 463–472. [Google Scholar]
- Jahanbakhshzadeh, A.; Aubertin, M.; Li, L. A New Analytical Solution for the Stress State in Inclined Backfilled Mine Stopes. Geotech. Geol. Eng. 2017, 35, 1151–1167. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. A coupled thermo–hydro-mechanical–chemical model for underground cemented tailings backfill. Tunn. Undergr. Space Technol. 2015, 50, 396–414. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. Multiphysics modeling of arching effects in fill mass. Comput. Geotech. 2017, 83, 114–131. [Google Scholar] [CrossRef]
- You, X.; Ren, F.Y.; He, R.X.; Ding, H.X. Research on compressive strength of cemented filling body in subsequent filling at the stage of open stope. J. Min. Saf. Eng. 2017, 34, 163–169. [Google Scholar] [CrossRef]
- Sobhi, M.A.; Li, L. Numerical investigation of the stresses in backfilled stopes overlying a sill mat. J. Rock Mech. Geotech. Eng. 2017, 9, 490–501. [Google Scholar] [CrossRef]
- Sobhi, M.A.; Li, L.; Aubertin, M. Numerical investigation of earth pressure coefficient along central line of backfilled stopes. Can. Geotech. J. 2017, 54, 138–145. [Google Scholar] [CrossRef]
- Fang, K.; Cui, L.; Fall, M. A coupled chemo-elastic cohesive zone model for backfill-rock interface. Comput. Geotech. 2020, 125, 103666. [Google Scholar] [CrossRef]
- Fang, K.; Fall, M.; Cui, L. Thermo-chemo-mechanical cohesive zone model for cemented paste backfill-rock interface. Eng. Fract. Mech. 2021, 244, 107546. [Google Scholar] [CrossRef]
- Yu, X.; Xiong, Z.; Song, W.; Chu, L.; Tan, Y. study on dynamic stability of mine pillar and filling body in high-stage subsequent cemented filling method. Min. Res. Dev. 2022, 42, 26–31. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, X.; Song, W.; Wang, H.; Cao, S. Experimental study on combined pressure-bearing mechanism of filling body and surrounding rock. J. Min. Saf. Eng. 2018, 35, 1071–1076. [Google Scholar] [CrossRef]
- Yu, S.; Yang, X.; Dong, K.; Xie, L.; Sun, X.; Guo, L. Space-time rule of the control action of filling body for the movement of surrounding rock in method of the delayed filling open stoping. J. Min. Saf. Eng. 2014, 31, 430–434. [Google Scholar] [CrossRef]
- Wang, Q.; He, Y.; Yang, F.; Wu, M.; Yao, N. Study on Stress Distribution and Movement Law of Overburden Deformation of Waste Rock Tailings Filling Structure. Met. Mine 2022, 128–135, 756–765. [Google Scholar]
- Yao, N.; Li, P.; Wang, Q.; Ye, Y.; Sun, L.; Deng, X.; Zhang, Y. Synergetic Mining Technology for Strip-filling Zone of Gently Inclined Phosphate Deposits under Complex Terrain. Met. Mine 2020, 50, 109–116. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, G.; Liu, H.; Yang, X. Surface subsidence prediction method of backfill-strip mining in coal mining. Bull. Eng. Geol. Environ. 2019, 78, 6235–6248. [Google Scholar] [CrossRef]
- Zha, J.; Guo, G.; Feng, W.; Wang, Q. Mining subsidence control by solid backfilling under buildings. Trans. Nonferrous Met. Soc. China 2011, 21, s670–s674. [Google Scholar] [CrossRef]
- Bai, E.; Guo, W.; Tan, Y.; Yang, D. The analysis and application of granular backfill material to reduce surface subsidence in China’s northwest coal mining area. PLoS ONE 2018, 13, e0201112. [Google Scholar] [CrossRef]
- JIA, L. Experimental study on failure characteristics of strata with different filling rates in longwall filling mining. Coal Sci. Technol. 2019, 47, 197–202. [Google Scholar] [CrossRef]
- Adach-Pawelus, K.; Pawelus, D. Application of Hydraulic Backfill for Rockburst Prevention in the Mining Field with Remnant in the Polish Underground Copper Mines. Energies 2021, 14, 3869. [Google Scholar] [CrossRef]
- Sivakugan, N.; Veenstra, R.; Naguleswaran, N. Underground Mine Backfilling in Australia Using Paste Fills and Hydraulic Fills. Int. J. Geosynth. Ground Eng. 2015, 1, 18. [Google Scholar] [CrossRef]
- Karian, T.; Shimada, H.; Sasaoka, T.; Wahyudi, S.; Qian, D.; Sulistianto, B. Countermeasure Method for Stope Instability in Crown Pillar Area of Cut and Fill Underground Mine. Int. J. Geosci. 2016, 7, 280–300. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Yan, H.; Li, M. Deformation Behavior of Hard Roofs in Solid Backfill Coal Mining Using Physical Models. Energies 2017, 10, 557. [Google Scholar] [CrossRef]
- Zuev, B.Y.; Zubov, V.P.; Fedorov, A.S. Application prospects for models of equivalent materials in studies of geomechanical processes in underground mining of solid minerals. Eurasian Min. 2019, 1, 8–12. [Google Scholar] [CrossRef]
- Ghabraie, B.; Ren, G.; Smith, J.; Holden, L. Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement. Int. J. Rock Mech. Min. Sci. 2015, 80, 219–230. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, C.; Zhang, Y.; Chen, F.; Zhang, S.; Zhang, K. Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks. Int. J. Min. Sci. Technol. 2021, 31, 291–302. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, W. experimental study on deformation and failure rule of overlying strata in Hongnipo copper mine. China Min. Mag. 2020, 29, 110–116. [Google Scholar]
- Rankine, R.; Pacheco, M.; Sivakugan, N. Underground Mining with Backfills. Soils Rocks 2007, 30, 93–101. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, B.; Chen, S.; Ren, M. Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines. Int. J. Rock Mech. Min. Sci. 2019, 113, 268–277. [Google Scholar] [CrossRef]
- Zhao, X.; Fourie, A.; Qi, C. Mechanics and safety issues in tailing-based backfill: A review. Int. J. Miner. Metall. Mater. 2020, 27, 1165–1178. [Google Scholar] [CrossRef]
Strata | Unit Weight γ (kN/m³) | Compressive Strength σc (kPa) | Tensile Strength σt (kPa) | Cohesion c (kPa) | Internal Friction Angle Φ (°) | Poisson’s Ratio ν | Young’s Modulus E (MPa) |
---|---|---|---|---|---|---|---|
Q | 15.63 | - | - | 0.12 | 14.00 | - | - |
Pt1t2 | 21.41 | 92.59 | 14.81 | 12.96 | 40.00 | 0.22 | 37.78 |
Pt1t1 | 21.41 | 92.59 | 14.81 | 12.96 | 40.00 | 0.22 | 37.78 |
Ore body | 21.86 | 166.67 | 16.67 | 14.81 | 45.00 | 0.23 | 32.96 |
Pt1s | 20.67 | 162.96 | 15.76 | 12.22 | 46.60 | 0.20 | 51.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Li, K.; Luo, J.; Zhe, Y.; Xu, M.; Feng, F. Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method. Minerals 2022, 12, 1017. https://doi.org/10.3390/min12081017
Liang W, Li K, Luo J, Zhe Y, Xu M, Feng F. Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method. Minerals. 2022; 12(8):1017. https://doi.org/10.3390/min12081017
Chicago/Turabian StyleLiang, Wei, Ke Li, Jiashun Luo, Yalei Zhe, Mengtang Xu, and Fushou Feng. 2022. "Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method" Minerals 12, no. 8: 1017. https://doi.org/10.3390/min12081017
APA StyleLiang, W., Li, K., Luo, J., Zhe, Y., Xu, M., & Feng, F. (2022). Experimental Study on the Interaction between Backfill and Surrounding Rock in the Overhand Cut-and-Fill Method. Minerals, 12(8), 1017. https://doi.org/10.3390/min12081017