Quartz is one of the most abundant minerals. Used in a variety of materials, it preserves geological history and reflects alteration conditions. Data were collected (>2400 data points) from more than 40 ore deposits to understand its internal texture and geochemistry. Cathodoluminescence imaging
[...] Read more.
Quartz is one of the most abundant minerals. Used in a variety of materials, it preserves geological history and reflects alteration conditions. Data were collected (>2400 data points) from more than 40 ore deposits to understand its internal texture and geochemistry. Cathodoluminescence imaging is a technique for examining the internal texture of quartz that may reveal information about the crystal’s origin and evolution. The dominant trace elements in quartz lattice are Al, P, Li, Ti, Ge, K, and Na. These, combined with internal texture, can distinguish quartz from different origins and can differentiate between different types of ore deposits, as each type of ore deposit has its own unique CL characteristics. Therefore, Al did not correlate with cathodoluminescence (CL) in epithermal Au-Sb-Hg, Carlin-type Au, epithermal Ag, or shale-hosted Zn deposits. Epithermal base metal and porphyry-Cu-type deposits were intermediate, and Mississippi-Valley-type, epithermal Au-Ag, and porphyry Cu-Mo deposits were characterized for Al correlation with CL. Furthermore, Gigerwald, Rohdenhaus, and Westland deposits had Li/Al ratios less than one, suggesting that H (as hydroxyl substituting for oxygen) completed the charge. However, trace elements (i.e., Ge, Sb, Ti, and Al), sector zoning, and resorption surfaces were vital parameters to differentiate between magmatic and hydrothermal quartz. Additionally, titanium and aluminum were the most important trace elements. Their values could be used to differentiate between different quartz types. Among them, hydrothermal and pegmatitic quartz were characterized by lower temperatures and Ti concentrations. Rhyolitic quartz was characterized by the lowest Al, the highest temperatures, and lower Al/Ti ratios. Aluminum, Li, and H were most important in hydrothermal and metamorphic quartz, but magmatic quartz was generally enriched with Ti.
Full article