Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study
Abstract
:1. Introduction
2. Geological Profile
2.1. Regional Geological Background
2.2. Geological Background of the Study Area
3. Methods
3.1. Data Collection and Analysis
3.2. Data Processing
3.2.1. Log-Ratio Transformation and Robust Principal Component Analysis
3.2.2. Spectrum–Area Fractal Model
4. Results and Discussion
4.1. Multivariate Component Data Analysis
4.2. Spectrum–Area Fractal Model Analysis
5. Conclusions
- Geochemical data are typical compositional data with a closure effect. Before the data can be statistically analysed, an ILR-transformed of the data is required. This method can effectively eliminate closure effects in geochemical data while revealing the true spatial distribution pattern of elements.
- The PC1 and PC2 principal components associated with mineralization were obtained by robust principal component analysis of the ILR-transformed data from the study area. The PC1 and PC2 principal components reflect a combination of elements associated with Au mineralization.
- The S–A method takes into account the spatial geometry and frequency distribution of geochemical patterns. It provides an effective means for characterizing geochemical anomaly fields and decomposing diverse geochemical fields.
- The S–A method was used to decompose the composite anomalies of the PC1 and PC2 principal component combinations in the study area, and the decomposed anomalies and background information were in good agreement with the known Au deposits (points). At the same time, a number of geochemical anomalies with prospecting potential were obtained in their periphery, which provided a theoretical basis and exploration focus for the next instance of ore prospecting and exploration in the study area.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rugless, C.S. Lithogeochemistry of Wainaleka Cu-Zn volcanogenic deposit, Viti Levu, Fiji, and possible applications for exploration in tropical terrains. J. Geochem. Explor. 1983, 19, 563–586. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Zhang, J.M.; Zhu, L.X.; Zheng, Y.X. Mercury, arsenic, antimony, bismuth and boron as geochemical indicators for geothermal areas. J. Geochem. Explor. 1986, 25, 379–388. [Google Scholar]
- Li, Y.G.; Cheng, H.X.; Yu, X.D.; Xu, W.S. Geochemical exploration for concealed nickel-copper deposits. J. Geochem. Explor. 1995, 55, 309–320. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Cox, M.A.; Cox, T.F. Multidimensional scaling. In Handbook of Data Visualization; Springer: Berlin/Heidelberg, Germany, 2008; pp. 315–347. [Google Scholar]
- Xiao, F.; Chen, J.G.; Hou, W.S.; Wang, Z.H. Identification and extraction of Ag-Au mineralization associated geochemical anomaly in Pangxitong district, southern part of the Qinzhou-Hangzhou Metallogenic Belt, China. Acta Petrol. Sin. 2017, 33, 779–790, (In Chinese with English abstract). [Google Scholar]
- Wang, L.; Liu, B.; McKinley, J.M.; Cooper, M.R.; Li, C.; Kong, Y.; Shan, M. Compositional data analysis of regional geochemical data in the Lhasa area of Tibet, China. Appl. Geochem. 2021, 135, 105108. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, J.M. A geochemical method for the exploration of kimberlite. J. Geochem. Explor. 1989, 33, 185–194. [Google Scholar]
- Grunsky, E.C. The interpretation of geochemical survey data. Geochem. Explor. Environ. Anal. 2010, 10, 27–74. [Google Scholar] [CrossRef]
- Zuo, R.G.; Carranza, E.J.M.; Wang, J. Spatial analysis and visualization of exploration geochemical data. Earth-Sci. Rev. 2016, 158, 9–18. [Google Scholar] [CrossRef]
- Zhao, P.D.; Chen, Y.Q. Digital geology and quantitative mineral exploration. Earth Sci. Front. 2021, 28, 1–5, (In Chinese with English abstract). [Google Scholar]
- Zuo, R.G.; Wang, J.; Xiong, Y.H.; Wang, Z.Y. The processing methods of geochemical exploration data: Past, present, and future. Appl. Geochem. 2021, 132, 105072. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained: Applied Environmental Statistics with R; Wiley: Chichester, UK, 2008; p. 343. [Google Scholar]
- Miesch, A.T. Estimation of the geochemical threshold and its statistical significance. J. Geochem. Explor. 1981, 16, 49–76. [Google Scholar] [CrossRef]
- Iwamori, H.; Yoshida, K.; Nakamura, H.; Kuwatani, T.; Hamada, M.; Haraguchi, S.; Ueki, K. Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. Geochem. Geophys. Geosystems 2017, 18, 994–1012. [Google Scholar] [CrossRef]
- Zheng, C.J.; Liu, P.F.; Luo, X.R.; Wen, M.L.; Huang, W.B.; Liu, G.; Wu, X.G.; Chen, Z.S.; Albanese, S. Application of compositional data analysis in geochemical exploration for concealed deposits: A case study of Ashele copper-zinc deposit, Xinjiang, China. Appl. Geochem. 2021, 130, 104997. [Google Scholar] [CrossRef]
- Nazarpour, A.; Omran, N.R.; Paydar, G.R.; Sadeghi, B.; Matroud, F.; Nejad, A.M. Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry 2015, 75, 117–132. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Ghezelbash, R. Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: A comparison of U-spatial statistics and fractal models. Arab. J. Geosci. 2016, 9, 1–16. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983; pp. 17–179. [Google Scholar]
- Bølviken, B.; Stokke, P.R.; Feder, J.; Jössang, T. The fractal nature of geochemical landscapes. J. Geochem. Explor. 1992, 43, 91–109. [Google Scholar] [CrossRef]
- Allegre, C.J.; Lewin, E. Scaling laws and geochemical distributions. Earth Planet. Sci. Lett. 1995, 132, 1–13. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Cheng, Q.M. Multifractality and spatial statistics. Comput. Geosci. 1999, 25, 949–961. [Google Scholar] [CrossRef]
- Xie, S.; Bao, Z. Fractal and multifractal properties of geochemical fields. Math. Geol. 2004, 36, 847–864. [Google Scholar] [CrossRef]
- Cheng, Q.M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geol. Rev. 2019, 113, 103115. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Zuo, R.G.; Xia, Q.L.; Zhang, D.J. A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 2013, 33, 165–172. [Google Scholar] [CrossRef]
- Cheng, Q.M. Multifractal distribution of eigenvalues and eigenvectors from 2D multiplicative cascade multifractal fields. Math. Geol. 2005, 37, 915–927. [Google Scholar] [CrossRef]
- Chen, G.X.; Cheng, Q.M. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Comput. Geosci. 2016, 87, 56–66. [Google Scholar] [CrossRef]
- Daya, A.A.; Afzal, P. A comparative study of concentration-area (CA) and spectrum-area (SA) fractal models for separating geochemical anomalies in Shorabhaji region, NW Iran. Arab. J. Geosci. 2015, 8, 8263–8275. [Google Scholar] [CrossRef]
- Cicchella, D.; Ambrosino, M.; Gramazio, A.; Coraggio, F.; Musto, M.A.; Caputi, A.; Avagliano, D.; Albanese, S. Using multivariate compositional data analysis (CoDA) and clustering to establish geochemical backgrounds in stream sediments of an onshore oil deposits area. The Agri River basin (Italy) case study. J. Geochem. Explor. 2022, 238, 107012. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Chen, J.; Qiao, K.; Cui, X.M.; Liang, S.S.; Li, C.L. Remote Sensing Alteration Information and Structure Analysis Based on Fractal Theory: A Case Study of Duobaoshan Area of Heilongjiang Province. Geoscience 2022, 19, 1–16, (In Chinese with English abstract). [Google Scholar]
- Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B (Methodol.) 1982, 44, 139–160. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman & Hall: London, UK, 1986; p. 416. [Google Scholar]
- Liu, Y.; Cheng, Q.M.; Zhou, K.F.; Xia, Q.L.; Wang, X.Q. Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data. Geochem. J. 2016, 50, 293–314. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, W.J.; Zhou, W.; Li, X.Y.; Yue, T.X. Comparison of additive and isometric log-ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions. Geoderma 2020, 365, 114214. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 2003, 67, 191–204. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xiao, W.J.; Zhao, G. Introduction to tectonics of China. Gondwana Res. 2013, 23, 1189–1206. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Sun, J.G.; Li, G.H.; Xu, W.X.; Lü, C.L.; Guo, Y.; Liu, J.; Zhang, X. Zircon U–Pb geochronology and Sr–Nd–Pb–Hf isotopic constraints on the timing and origin of the Early Cretaceous igneous rocks in the Yongxin gold deposit in the Lesser Xing’an Range, NE China. Geol. J. 2020, 55, 2684–2703. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Zhou, J.; Zhou, Z.H.; Wu, Y.; Hou, L. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits. J. Asian Earth Sci. 2013, 78, 222–236. [Google Scholar] [CrossRef]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Zhang, J.H. Mineralization ages and geodynamic implications of porphyry Cu–Mo deposits in the east of Xingmeng orogenic belt. Chin. Sci. Bull. 2007, 52, 2407–2417. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Sun, J.G.; Li, G.H.; Xu, W.X.; Lü, C.L.; Wu, S.; Guo, Y.; Ren, L.; Hu, Z.X. Age of the Yongxin Au deposit in the Lesser Xing’an Range: Implications for an Early Cretaceous geodynamic setting for gold mineralization in NE China. Geol. J. 2019, 54, 2525–2544. [Google Scholar] [CrossRef]
- Pang, X.Y.; Qin, K.Z.; Wang, L.; Song, G.X.; Li, G.M.; Su, S.Q.; Zhao, C. Deformation characteristics of the Tongshan fault within Tongshan porphyry copper deposit, Heilongjiang Province, and restoration of alteration zones and orebodies. Acta Petrol. Sin. 2017, 33, 398–414, (In Chinese with English abstract). [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Chu, S.X.; Wang, Y.B.; Sun, Y.; Duan, X.X.; Zhou, L.L.; Qu, W.J. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance. J. Asian Earth Sci. 2014, 79, 895–909. [Google Scholar] [CrossRef]
- Hu, X.L.; Ding, Z.J.; He, M.C.; Yao, S.Z.; Zhu, B.P.; Shen, J.; Chen, B. Two epochs of magmatism and metallogeny in the Cuihongshan Fe-polymetallic deposit, Heilongjiang Province, NE China: Constrains from U–Pb and Re–Os geochronology and Lu–Hf isotopes. J. Geochem. Explor. 2014, 143, 116–126. [Google Scholar] [CrossRef]
- Hu, X.L.; Ding, Z.J.; He, M.C.; Yao, S.Z.; Zhu, B.P.; Shen, J.; Chen, B. A porphyry-skarn metallogenic system in the Lesser Xing’an Range, NE China: Implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits. J. Asian Earth Sci. 2014, 90, 88–100. [Google Scholar] [CrossRef]
- Gao, R.; Xue, C.; Lü, X.; Zhao, X.; Yang, Y.; Li, C. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geol. Rev. 2017, 84, 202–217. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, J.; Ripley, E.M.; Wang, J. Geochronological and He–Ar–S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos 2015, 212, 338–352. [Google Scholar] [CrossRef]
- Sun, J.G.; Han, S.J.; Zhang, Y.; Xing, S.W.; Bai, L.A. Diagenesis and metallogenetic mechanisms of the Tuanjiegou gold deposit from the Lesser Xing’an Range, NE China: Zircon U–Pb geochronology and Lu–Hf isotopic constraints. J. Asian Earth Sci. 2013, 62, 373–388. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Yang, Q.; Li, C. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci. 2015, 97, 442–458. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Sun, J.G.; Li, G.H.; Xu, W.X.; Lü, C.L.; Wu, S.; Guo, Y.; Liu, J.; Ren, L. Early Cretaceous gold mineralization in the Lesser Xing’an Range of NE China: The Yongxin example. Int. Geol. Rev. 2019, 61, 1522–1549. [Google Scholar] [CrossRef]
- Ye, J.Y.; Jiang, B.L. Combination schemes of sample analysis methods for multitarget geochemical survey. Geol. Bull. China 2006, 25, 741–744, (In Chinese with English abstract). [Google Scholar]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis Theory and Applications; John Wiley & Sons Ltd.: London, UK, 2021; pp. 1–372. [Google Scholar]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barcelo-Vidal, C. Isometric logratio transforma-tions for compositional data analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Env. Off. J. Int. Env. Soc. 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Templ, M. Applied Compositional Data Analysis; Springer: Cham, Switzerland, 2018; pp. 1–64. [Google Scholar]
- Cheng, Q.M.; Xu, Y.G.; Grunsky, E. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res. 2000, 9, 43–52. [Google Scholar] [CrossRef]
- Zuo, R.G. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. J. Geochem. Explor. 2014, 139, 170–176. [Google Scholar] [CrossRef]
- Zuo, R.G.; Wang, J.L. ArcFractal: An ArcGIS add-in for processing geoscience data using fractal/multifractal models. Nat. Resour. Res. 2020, 29, 3–12. [Google Scholar] [CrossRef]
- Malinowski, E.R. Determination of rank by median absolute deviation (DRMAD): A simple method for determining the number of principal factors responsible for a data matrix. J. Chemom. A J. Chemom. Soc. 2009, 23, 1–6. [Google Scholar] [CrossRef]
Element | Analysis Method | Detection Limit | Precision (RSD%) |
---|---|---|---|
Ag | ES | 0.02 mg/kg | 5.32 |
As | AFS | 0.20 mg/kg | 4.98 |
Au | GAAS | 0.30 mg/kg | 4.39 |
Bi | AFS | 0.03 mg/kg | 4.71 |
Cu | XRF | 1.00 mg/kg | 4.54 |
Hg | AFS | 0.01 mg/kg | 6.72 |
Mn | XRF | 5.60 mg/kg | 2.49 |
Mo | ES | 0.24 mg/kg | 6.99 |
Ni | XRF | 2.80 mg/kg | 1.31 |
Pb | XRF | 1.50 mg/kg | 3.67 |
Sb | AFS | 0.05 mg/kg | 5.37 |
W | POL | 0.31 mg/kg | 4.92 |
Zn | XRF | 3.00 mg/kg | 2.59 |
Fe | XRF | 0.05 mg/kg | 2.22 |
Element | Ag | As | Au | Bi | Cu | Hg | Mn | Mo | Ni | Pb | Sb | W | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 0.04 | 1.00 | 0.10 | 0.05 | 3.20 | 0.01 | 85.00 | 0.25 | 3.10 | 9.00 | 0.04 | 0.27 | 15.00 | 0.59 | |
percentiles | 25% | 0.07 | 8.30 | 0.70 | 0.30 | 18.90 | 0.03 | 658.00 | 0.80 | 22.40 | 23.20 | 0.49 | 1.76 | 62.70 | 3.57 |
50% | 0.08 | 9.80 | 1.00 | 0.34 | 22.50 | 0.03 | 972.00 | 0.96 | 25.70 | 25.60 | 0.57 | 1.96 | 73.50 | 3.96 | |
75% | 0.10 | 12.10 | 1.50 | 0.38 | 25.90 | 0.04 | 1228.00 | 1.18 | 29.60 | 28.40 | 0.69 | 2.17 | 84.60 | 4.34 | |
Maximum | 3.58 | 151.20 | 1309.50 | 23.04 | 193.50 | 1.22 | 6865.00 | 108.90 | 194.20 | 228.60 | 12.89 | 50.86 | 347.00 | 8.67 | |
Std | 0.08 | 5.35 | 17.60 | 0.36 | 8.57 | 0.02 | 455.00 | 1.50 | 8.85 | 5.94 | 0.30 | 1.11 | 18.80 | 0.63 | |
Mean | 0.09 | 10.70 | 1.74 | 0.37 | 23.40 | 0.03 | 977.00 | 1.11 | 26.70 | 26.20 | 0.62 | 2.06 | 75.30 | 3.93 | |
Raw | Skew | 17.77 | 9.22 | 66.50 | 37.28 | 4.82 | 22.19 | 1.42 | 42.38 | 5.20 | 8.55 | 13.11 | 22.75 | 2.32 | −0.27 |
Kurt | 547.06 | 169.66 | 4655.68 | 1966.62 | 55.15 | 930.34 | 9.08 | 2682.53 | 68.48 | 195.55 | 379.33 | 765.61 | 17.65 | 2.28 | |
MAD | 0.02 | 2.67 | 0.59 | 0.06 | 5.19 | 0.01 | 418.09 | 0.28 | 5.34 | 3.85 | 0.13 | 0.31 | 16.16 | 0.58 | |
log10 | Skew | 2.27 | 0.44 | 1.41 | 2.13 | 0.16 | 0.64 | −0.76 | 2.04 | −0.17 | 1.17 | 0.96 | 1.68 | 0.16 | −1.58 |
Kurt | 9.72 | 6.05 | 7.40 | 19.70 | 4.03 | 5.89 | 0.60 | 13.43 | 5.32 | 9.64 | 7.87 | 19.51 | 2.63 | 7.41 | |
MAD | 0.10 | 0.11 | 0.23 | 0.07 | 0.10 | 0.13 | 0.18 | 0.13 | 0.09 | 0.06 | 0.11 | 0.07 | 0.10 | 0.06 | |
ILR | Skew | 1.78 | 0.50 | 1.45 | 2.43 | 0.66 | 0.77 | −0.73 | 1.86 | 0.67 | 0.12 | 0.94 | 1.87 | 0.41 | −0.66 |
Kurts | 7.32 | 4.38 | 8.30 | 20.50 | 4.11 | 5.52 | 0.42 | 12.05 | 6.63 | 2.30 | 8.69 | 15.45 | 0.85 | 4.22 | |
MAD | 0.24 | 0.26 | 0.49 | 0.15 | 0.19 | 0.28 | 0.44 | 0.28 | 0.17 | 0.18 | 0.22 | 0.16 | 0.23 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Qiao, K.; Liu, Y.; Chen, J.; Li, C. Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study. Minerals 2022, 12, 1035. https://doi.org/10.3390/min12081035
Zhao Z, Qiao K, Liu Y, Chen J, Li C. Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study. Minerals. 2022; 12(8):1035. https://doi.org/10.3390/min12081035
Chicago/Turabian StyleZhao, Zhonghai, Kai Qiao, Yiwen Liu, Jun Chen, and Chenglu Li. 2022. "Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study" Minerals 12, no. 8: 1035. https://doi.org/10.3390/min12081035
APA StyleZhao, Z., Qiao, K., Liu, Y., Chen, J., & Li, C. (2022). Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study. Minerals, 12(8), 1035. https://doi.org/10.3390/min12081035