Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Ore District Geology
3. Tomographic Inversion
3.1. Fundamental Principles
3.2. Seismic Data Acquisition
3.3. First-Arrival Seismic Tomography Inversion
- Data preprocessing. The seismic data were first decoded to change the format of the seismic instrument field record (e.g., SEG-D) to the format for seismic data processing. The observation system and the trace header were then loaded. The next step was to determine the linear correction parameters and check the first-arrival wave of all shots.
- First-arrival travel time picking. In this study, a combination of “automatic pickup” and “manual modification” was used to pick the first-arrival wave through cross-correlation of adjacent channels. The first-arrival seismic data were then adjusted according to the actual information of all shots to ensure accurate tomographic inversion results.
- First-arrival travel time editing (Figure 4). After converting the coordinates, seismic traces with first-arrival travel times less than 0 were removed, followed by interception of data within the shot point range. Subsequently, bad traces were removed under the display of first-arrival seismic data with the offset time.
- Initial model building. Displaying the first-arrival data with the offset time, the initial model parameters were determined according to the inflection point of the time-distance curve, and the initial model was established using the delay-time method. The horizontal grid size of the initial model is generally 1/2 that of the trace interval, while the vertical grid size is 1/4 that of the trace interval.
- Tomographic inversion. Input of walk time data and the established initial model was performed for carrying out tomographic inversion to obtain the shallow velocity structure.
3.4. Parameters of Tomographic Inversion and Analysis of Tomography Results
4. Tomography Results
4.1. Ray Density Distribution
4.2. Tomography Profile
5. Discussion
5.1. Structure of Velocity Profile
5.2. Depth of Porphyry Body Burial at the Tongshan Deposit
5.3. Indication of Mineralization
6. Conclusions
- In the Duobaoshan ore district, the first-arrival seismic tomography profile shows multiple phases of undulating changes at the high-velocity interface, which may be related to multiple phases of magmatic activity. Based on the spatial distribution characteristics and velocity structure of each type of deposit, we can infer that the distribution of diorite and porphyry copper deposits in the Duobaoshan ore district is related to the occulted granite bodies, whereas the distribution of the epithermal Au deposits is related to the occulted fracture zones.
- The velocity profile suggests that the porphyry body in the Tongshan deposit is likely buried at an elevation of approximately −1000 m, and the critical exploration area should therefore be below this elevation. The similar ages, geochemical characteristics, and velocity structures of the porphyry bodies indicate that they may be connected below the Duobaoshan and Tongshan deposits.
- The velocity profile shows that there are several groups of occulted fractures beneath the deposits, and the strongest mineralization in the region occurs at the fracture−tectonic intersection. The copper and gold deposits, which are closely related to magmatic activities, fall within the high magnetic anomaly zone in the Duobaoshan ore district. The occulted fractures may have provided a channel for the transport of magma associated with mineralization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qu, H.; Li, C.L.; Yang, F.S. Zircon U-Pb ages, geochemical characteristics and their geological implication of granitic complex in Huolongmen area, northwestern Xiao Hinggan mountains. Glob. Geol. 2015, 34, 34–43. [Google Scholar]
- Gao, J.; Zhu, M.T.; Wang, X.S.; Hong, T.; Li, G.M.; Li, J.L.; Xiao, W.J.; Qin, K.Z.; Zeng, Q.D.; Shen, P.; et al. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain:tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geol. Sin. 2019, 93, 24–71. [Google Scholar]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econo. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Zhang, J.H. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chin. Sci. Bull. 2007, 52, 3416–3427. [Google Scholar] [CrossRef]
- Wang, L.; Qin, K.Z.; Song, G.X.; Pang, X.Y.; Li, Z.Z.; Zhao, C.; Jin, L.Y.; Zou, X.Y.; Li, G.M. Volcanic-subvolcanic rocks and tectonic setting of the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, eastern Central Asian Orogenic Belt, NE China. J. Asian Earth Sci. 2018, 165, 328–351. [Google Scholar] [CrossRef]
- Cui, G.; Wang, J.Y.; Zhang, J.X. U-Pb SHRIMP dating of zircon from Duobaoshan granodiorite in Heilongjiang and its geological significance. Global Geol. 2008, 27, 387–394. [Google Scholar]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the early cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.C.; Sun, F.Y.; Liu, J.; Wang, G.R.; Xu, B. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. J. Asian Earth Sci. 2015, 97, 229–250. [Google Scholar] [CrossRef]
- Cai, W.Y.; Wang, K.Y.; Li, J.; Fu, L.J.; Lai, C.K.; Liu, H.L. Geology, geochronology and geochemistry of large Duobaoshan Cu-Mo-Au ore field in NE China: Magma genesis and regional tectonic implications. Geosci. Front. 2021, 12, 265–292. [Google Scholar] [CrossRef]
- Cai, W.Y. Metallogenesis of Copper-Molybdenum-Gold Polymetallic in the Duobaoshan Orefield, Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2021. [Google Scholar]
- Pang, X.Y.; Qin, K.Z.; Wang, L.; Song, G.X.; Li, G.M.; Su, S.Q.; Zhao, C. Deformation characteristics of the Tongshan fault within Tongshan porphyry copper deposit, Heilongjiang Province, and restoration of alteration zones and orebodies. Acta Petrol. Sin. 2017, 33, 398–414. [Google Scholar]
- Shi, J.M.; Lin, Z.F.; Hu, X. Discussion about the connection among aeromagnetic anomaly characteristics, geological structure and metallogenic belt in Daxinganling area. Prog. Geophys. 2014, 29, 110–115. [Google Scholar]
- Hou, H.; Gao, R.; He, R.; Liu, J.; Feng, S.; Guan, Y.; Cai, X.; Knapp, J.H.; Wu, F.T. Near-surface velocity structure and static correction of basin-mountain junction zone: Case study on the junction belt of western part of South Tianshan and Tarim Basin. Geophys. Prospect. Pet. 2010, 49, 7–11. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Wang, H.Y.; Hou, H.H.; Gao, R. Near-surface fine velocity structure in eastern segment of Central Asian Orogenic Belt: Revealed by first-arrival wave tomography from deep seismic reflection profile. J. Jilin Univ. 2021, 51, 584–596. [Google Scholar]
- Qin, K.Z.; Li, G.M.; Zhao, J.X.; Zhai, M.G.; Zeng, Q.D.; Gao, J.; Xiao, W.J.; Li, J.L.; Sun, S. Links of collage orogenesis of microcontinents and crust evolution to characteristic metallogeneses in China. Acta Petrol. Sin. 2017, 33, 305–325. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian Orogenic Belt. Tectonics 2003, 22, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.B.; Cao, J.L.; Wilde, S.A.; Zhao, G.C.; Zhang, J.J.; Wang, B. Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 2014, 33, 2444–2466. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.B.; Wilde, S.A.; Zhao, G.C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhou, Z.H.; Ouyang, H.G. The Ordovician igneous rocks with high Sr /Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role. Ore Geol. Rev. 2017, 86, 600–614. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A.; Zhang, X.Z.; Zhao, G.C.; Liu, F.L.; Qiao, D.W.; Ren, S.M.; Liu, J.H. A > 1300 km late Pan-African metamorphic belt in ne China: New evidence from the Xing an block and its tectonic implications. Tectonophysics 2011, 509, 280–292. [Google Scholar] [CrossRef]
- Liu, B.S.; Cheng, Z.X.; Zhang, C.P. Preliminary discussion on the effect of tectonic evolution on the superposition and transformation of the ore concentration area in Duobaoshan-Nenjiang. Miner. Resour. Geol. 2019, 33, 54–62. [Google Scholar]
- Li, Y.; Xu, W.L.; Wang, F.; Pei, F.P.; Tang, J.; Zhao, S. Triassic volcanism along the eastern margin of the Xing’an Massif, NE China: Constraints on the spatialtemporal extent of the Mongol-Okhotsk tectonic regime. Gondwana Res. 2017, 48, 205–223. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A.; Zhang, X.Z.; Zhao, G.C.; Zheng, C.Q.; Wang, Y.J.; Zhang, X.H. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 2009, 478, 230–246. [Google Scholar] [CrossRef]
- Deng, K.; Li, Q.; Chen, Y.; Zhang, C.; Zhu, X.; Xu, Q. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications. Lithos 2018, 296, 113–128. [Google Scholar] [CrossRef]
- Hao, Y.J. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China. Ph.D. Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Chu, S.X.; Wang, Y.B.; Sun, Y.; Duan, X.X.; Zhou, L.L.; Qu, W.J. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance. J. Asian Earth Sci. 2014, 79, 895–909. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, K.Z.; Song, G.X.; Li, G.M.; Li, Z.Z.; Pang, X.Y.; Wang, L. Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China. J. Asian Earth Sci. 2018, 165, 352–370. [Google Scholar] [CrossRef]
- Liu, J.; Wu, G.; Li, Y.; Zhu, M.T.; Zhong, W. Re–Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. J. Asian Earth Sci. 2012, 49, 300–312. [Google Scholar] [CrossRef]
- Bai, L.A.; Sun, J.G.; Gu, A.L.; Zhao, K.Q.; Sun, Q.L. A review of the genesis, geochronology, and geological significance of hydrothermal copper and associated metals deposits in the Great Xing’an Range, NE China. Ore Geol. Rev. 2014, 61, 192–203. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Zhao, X.; Yang, Q.; Tong, K.Y.; Li, C. Mineralization time and tectonic setting of the Zhengguang Au deposit in the Duobaoshan ore field, Heilongjiang Province, NE China. Arab. J. Geosci. 2016, 9, 655–675. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R.; Zhu, M.; Wang, X.; Li, J.; Wan, B.; Xiao, W.; Zeng, Q. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. J. Asian Earth Sci. 2017, 165, 7–36. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.P.; Na, F.C.; Zhang, G.Y.; Kang, Z.; Liu, Y.C.; Zhang, W.L.; Mao, Z.X. Determination and geological implication of the granitic mylonite in Nenjiang-Heihe tectonic belt. Geol. Res. 2013, 22, 452–459. [Google Scholar]
- Zhao, Z.H.; Zheng, W.Z.; Qu, H.; Guo, Y.; Li, C.L.; Wang, Z.; Zhang, J.F. Cu-Au mineralization and metallogenic regularity of Duobaoshan area, Heilongjiang Province. Miner. Depos. 2012, 31, 601–614. [Google Scholar]
- Han, Z.X.; Xu, Y.Q.; Zheng, Q.D. Metallogenetic Series and Evolution of Significant Metal and Nonmetal Mineral Resources in Heilongjiang Province; Heilongjiang People Publishing: Harbin, China, 2004; pp. 1–241. [Google Scholar]
- Li, D.R.; LV, F.L.; Liu, S.Y.; LV, J. Geological features and prospecting orientation of the Sankuanggou Cu-Mo-Au deposit in Nenjiang county, Heilongjiang province. Geol. China 2011, 38, 415–426. [Google Scholar]
- Du, Q.; Ma, X.Y.; Han, C.M.; Li, Z.Y.; Jiang, X.L. Genetic Discussion on Porphyry Copper Deposit; Geological Publishing House: Beijing, China, 2008. [Google Scholar]
- Li, Z.T.; Wang, X.J.; Wang, H.B.; Wu, G. Geology of the Sankuanggou gold bearing iron-copper deposit in Nenjiang County, Heilongjiang Province. Geol. Resour. 2008, 17, 170–174. [Google Scholar]
- Liu, Z.K.; Wu, Y.G.; Liu, Y.J. Near-surface static correction method using first-arrival traveltimes velocity tomography. Chin. J. Geophys. 1995, 38, 153–159. [Google Scholar]
- Hole, J.A. Nonlinear high-resolution three-dimensional seismic travel time tomography. J. Geophys. Res. Solid Earth 1992, 97, 6553–6562. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zeng, X.K.; Ding, Z.F.; Hong, R.; Zhao, D.H. Finite-difference tomography of upper crustal structure in Dabieshan Orogenic Belt. Chin. J. Geophys. 1997, 40, 495–502. [Google Scholar]
- Du, Y.J. The Metallogenic Characteristics and Prospecting Direction of Duobaoshan Cu-Au Metallogenic Belt, Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2012. [Google Scholar]
- Li, J.G.; Zhao, B.; Sun, S.W.; Zhou, X.P.; Sun, Y.; Song, L.F.; Huang, Q.; Xiang, B.; Xiao, K. Application of seismic first arrival tomographic inversion on the exploration of polymetallic mine. Geoscience 2012, 26, 1218. [Google Scholar]
- Li, Y. The Study of the Main Rock and Typical Deposits in the North of Duobaoshan District, Heilongjiang Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2016. [Google Scholar]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Yang, Q.; Li, C. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci. 2015, 97, 442–458. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhnag, R.; Zhang, Q.Z. The regional metallogeny of Da hinggan ling, China. Earth Sci. Front. 2004, 11, 269–277. [Google Scholar]
- Zhao, C.; Qin, K.Z.; Song, G.X.; Li, G.M. Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from granitoids in the Duobaoshan ore field, Heilongjiang Province, Northeast China. Lithos 2019, 336–337, 202–220. [Google Scholar] [CrossRef]
- Jiang, W.W.; Zhou, L.H.; Xiao, D.Q.; Gao, J.R.; Yuan, S.Q.; Tu, G.H.; Zhu, D.Y. The characteristics of crust structure and the gravity and magnetic fields in northeast region of China. Prog. Geophys. 2006, 21, 730–738. [Google Scholar]
- Shi, D.N.; Lü, Q.T.; Xu, W.Y.; Yan, J.Y.; Zhao, J.H.; Dong, S.W.; Chang, F.Y. Crustal structures beneath the mid-lower Yangtze Metallogenic belt and its adjacent regions in eastern China—Evidences from P-wave receiver function imaging for a MASH metallization process? Acta Geol. Sin. 2012, 86, 389–399. [Google Scholar]
- Yuan, M.W.; Li, S.R.; Li, C.L.; Santosh, M.; Alam, M.; Zeng, J.Y. Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit, Central Asian Orogenic Belt: Implication for ore genesis. Ore Geol. Rev. 2018, 93, 255–267. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, K.Z.; Song, G.X.; Li, G.M.; Mao, J.W. The Triassic Duobaoshan appinite-granite suite, NE China: Implications for a water-fluxed lithospheric mantle and an extensional setting related to the subduction of the Mongol-Okhotsk Ocean. Lithos 2021, 394–395, 106169. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Hou, H.; Fu, W.; Deng, X.; Zhang, J.; Ying, H. Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography. Minerals 2022, 12, 959. https://doi.org/10.3390/min12080959
Pan Z, Hou H, Fu W, Deng X, Zhang J, Ying H. Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography. Minerals. 2022; 12(8):959. https://doi.org/10.3390/min12080959
Chicago/Turabian StylePan, Zongdong, Hesheng Hou, Wei Fu, Xiaofan Deng, Jiaduo Zhang, and Hengcheng Ying. 2022. "Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography" Minerals 12, no. 8: 959. https://doi.org/10.3390/min12080959
APA StylePan, Z., Hou, H., Fu, W., Deng, X., Zhang, J., & Ying, H. (2022). Velocity Structure and Cu-Au Mineralization of the Duobaoshan Ore District, NE China: Constrained by First-Arrival Seismic Tomography. Minerals, 12(8), 959. https://doi.org/10.3390/min12080959