Constraints on the Genesis of the Shuangwang Gold Deposit in Qinling Orogen, Central China: Evidence from In Situ Trace Element and Sulfur Isotope
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology
4. Sampling and Analytical Methods
4.1. Samples Description
4.2. In Situ Trace Element Analysis of Pyrite
4.3. In Situ Sulfur Isotope Analysis of Pyrite
5. Analytical Results
5.1. Pyrite Types
5.2. In Situ Trace Element
5.3. In Situ Sulfur Isotope
6. Discussion
6.1. Implications of Element Variations
6.2. Source of Sulfur
6.3. Discussion on the Genesis of Deposit
7. Conclusions
- Sulfur of the Shuangwang deposit comes from the wallrock, mixed with sulfur from magma.
- Trace elements were enriched in the syn-ore pyrite much more than in post-ore pyrite.
- High arsenic content and the rapid crystallization of pyrite are related to gold mineralization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Qiu, Y.M.; Goldfarb, R.J.; Zhang, Z.C.; Garwin, S.; Ren, F.S. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Miner. Depos. 2002, 37, 352–377. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, J.; Zhang, F.X.; Pirajno, F.; Li, C. Carlin and Carlin-like gold deposits in western Qinling Mountains and their metallogenic time, tectonic setting and model. Geol. Rev. 2004, 50, 134–152. [Google Scholar]
- Liu, J.J.; Liu, C.H.; Carranza, E.J.M.; Li, Y.J.; Mao, Z.H.; Wang, J.P.; Wang, Y.H.; Zhang, J.; Zhai, D.G.; Zhang, H.F.; et al. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China. J. Asian Earth Sci. 2015, 103, 40–69. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Mao, J.W.; Li, X.F. Geology, geochemistry and metallogenic mechanism of Shuangwang breccis type gold deposit. Miner. Depos. 2004, 23, 241–252. [Google Scholar]
- Liu, B.Z.; Wang, J.P.; Wang, K.X.; Liu, J.J.; Xie, H.Y.; Cao, R.R.; Hui, D.F.; Cheng, J.J. Characteristics and geological significance of fluid inclusions in the Shuangwang gold deposit, Shaanxi Province. Geoscience 2011, 25, 1088–1098. [Google Scholar]
- Wang, K.X.; Wang, J.P.; Liu, J.J.; Zeng, X.T.; Cao, R.R.; Hui, D.F.; Cheng, J.J.; Zhang, J.L.; Li, Z.G.; Li, X.G.; et al. Geology and stable isotope geochemistry of the Shuangwang gold deposit in Taibai County, Shaanxi Province. Geol. China 2012, 39, 1359–1374. [Google Scholar]
- Wang, J.P.; Liu, J.J.; Carranza, E.J.M.; Liu, Z.J.; Liu, C.H.; Liu, B.Z.; Wang, K.X.; Zeng, X.T.; Wang, H. A possible genetic model of the Shuangwang hydrothermal breccia gold deposit, Shaanxi Province, central China: Evidence from fluid inclusion and stable isotope. J. Asian Earth Sci. 2015, 11, 840–852. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, J.J.; Carranza, E.J.M.; Wang, J.P.; Zhai, D.G.; Zhang, F.F.; Wang, Y.H.; Liu, Z.J. Iron and magnesium isotope systematics from the Shuangwang gold deposit in the Qinling Orogen, central China. Ore Geol. Rev. 2021, 134, 104123. [Google Scholar] [CrossRef]
- Cheng, F. Studies on Material Composition and Genesis of the Shangwang Gold Deposit, Shaanxi Province. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 1 May 2016. [Google Scholar]
- Xie, Y.L.; Xu, J.H.; Qian, D.Y. Characteristics of ore-bearing mineral and its genesis significance of Taibai gold deposit. J. Univ. Sci. Technol. Beijing 1997, 19, 223–227. [Google Scholar]
- Zeng, X.T.; Wang, J.P.; Liu, B.Z.; Liu, C.H.; Cao, R.R.; Gao, C.; Wang, L.; Zhang, G.G.; Zhao, X.J.; Qi, F. Typomorphic characteristics from pyrite of the No. 5 orebody in the Shuangwang Gold Deposit, Shaanxi Province. Geol. Explor. 2012, 48, 0076–0084. [Google Scholar]
- Wang, J.P.; Liu, Z.J.; Liu, J.J.; Zeng, X.T.; Wang, K.X.; Liu, B.Z.; Wang, H.; Liu, C.H.; Zhang, F.F. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. J. Earth Sci. 2018, 29, 564–572. [Google Scholar] [CrossRef]
- Zhang, G.W.; Meng, Q.R.; Yu, Z.P.; Sun, Y.; Zhou, D.W.; Guo, A.L. Orogenesis and dynamics of Qinling orogen. Sci. China 1996, 26, 193–200. [Google Scholar]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Wang, R.T.; Wang, T.; Gao, Z.J.; Chen, E.H.; Liu, L.X. The main metal deposits metallogenic series and exploration direction in Feng-Tai ore cluster region, Shaanxi Province. Northwestern Geol. 2007, 40, 77–84. [Google Scholar]
- Zeng, Q.T.; McCuaig, T.C.; Hart, C.J.; Jourdan, F.; Muhling, J.; Bagas, L. Structural and geochronological studies on the Liba goldfield of the West Qinling Orogen, Central China. Miner. Depos. 2012, 47, 799–819. [Google Scholar] [CrossRef]
- Hu, Q.Q.; Wang, Y.T.; Wang, R.T.; Li, J.H.; Dai, J.Z.; Wang, S.Y. Ore-forming time of the Erlihe Pb-Zn deposit in the Fengxian-Taibai ore concentration area, Shaanxi Province: Evidence from the Rb-Sr isotopic dating of sphalerites. Acta Petrol. Sin. 2012, 28, 258–266. [Google Scholar]
- Wang, Y.T.; Chen, S.C.; Hu, Q.Q.; Zhang, J.; Liu, X.L.; Huang, S.K. Tectonic controls on polymetallic mineralization in the Fengxian-Taibai ore cluster zone, Western Qinling, Shannxi Province. Acta Petrol. Sin. 2018, 34, 1959–1976. [Google Scholar]
- Liu, S.W.; Yang, P.T.; Li, Q.G.; Wang, Z.Q.; Zhang, W.Y.; Wang, W. Indosinian Granitoids and Orogenic Processes in the Middle Segment of the Qinling Orogen, China. J. Jilin Univ. 2011, 41, 1928–1943. [Google Scholar]
- Wang, H. The Features of Magmatic Rocks in Shuangwang Gold Mine, Shanxi Province and Its Implication on Gold Mineralization. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 1 May 2012. [Google Scholar]
- Zhang, F.; Liu, S.W.; Li, Q.G.; WANG, Z.Q.; Han, Y.G.; Yang, K.; Wu, F.G. LA-ICP-MS Zircon U-Pb Geochronology and Geological Significance of Xiba Granitoids from Qinling, Central China. Acta Sci. Nat. Univ. Pekin. 2009, 45, 833–840. [Google Scholar]
- Liu, C.H. Metallogenic Mechanism and Regularity of the Shuangwang Gold Deposit, Shaanxi Province. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 1 May 2016. [Google Scholar]
- Shi, Z.L.; Liu, J.X.; Fan, S.C. Geological Characteristics and Genesis of the Shuangwang Gold Deposit, Shaanxi Province; Shaanxi Science and Technology Press: Xi’an, China, 1989; pp. 1–129. [Google Scholar]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Bendall, C.; Lahaye, Y.; Fiebig, J.; Weyer, S.; Brey, G.P. In situ sulfur isotope analysis by laser ablation MC-ICPMS. Appl. Geochem. 2006, 21, 782–787. [Google Scholar] [CrossRef]
- Mason, P.R.D.; Košler, J.; Hoog, J.C.M.; Sylvester, P.J.; Meffan-Main, S. In situ determination of sulfur isotopes in sulfur-rich materials by laser ablation multiplecollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). J. Anal. At. Spectrom. 2006, 21, 177–186. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-syle sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Tanner, D.; Henley, R.W.; Mavrogenes, J.A.; Holden, P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile. Contrib. Mineral. Petrol. 2016, 171, 33. [Google Scholar] [CrossRef] [Green Version]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.J. The Study on the Tectonic-Fluid System and Metallogenic Mechanism of Shuangwang Gold Deposit in Shaanxi Province. Ph.D. Thesis, China University of Geosciences (Wuhan), Wuhan, China, 1 September 2014. [Google Scholar]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–579. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Sun, C.; Yang, X.Y.; Du, G.F.; Aziz, A.J.H. Genesis of the Selinsing gold deposit, Peninsular Malaysia: Constraints from mineralogy, geochemistry and in situ sulfur isotope compositions of sulfides. Ore Geol. Rev. 2019, 113, 103111. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–285. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Z. Ore-Forming Fluid and Geochemical Characteristics of the No. 5 Ore-Body of the Shuangwang Gold Deposit Shaanxi. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 1 April 2012. [Google Scholar]
- Wang, G.F. Researches on Tectono-Metallogenesis and Metallogenic Prognosis in Shuangwang Gold Deposit, Shaanxi Province, China. Ph.D. Thesis, Central South University, Changsha, China, 1 March 2006. [Google Scholar]
- Cabri, L.J.; Newville, M.; Gordon, R.A.; Crozier, E.D.; Sutton, S.R.; McMahon, G.; Jiang, D.T. Chemical speciation of gold in arsenopyrite. Can. Mineral. 2000, 38, 1265–1281. [Google Scholar] [CrossRef] [Green Version]
Mineral | No. | Au | As | Ag | Co | Ni | Cu | Sb | Zn | Pb | Se | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PyⅡ | 11-1-01 | 3.28 | 5502.86 | 0.00 | 270.70 | 262.73 | 0.21 | 0.00 | 1.14 | 0.00 | 62.06 | 0.75 |
PyⅡ | 11-1-02 | 3.75 | 3312.97 | 0.00 | 143.22 | 126.10 | 0.19 | 0.00 | 0.74 | 0.00 | 80.38 | 10.23 |
PyⅡ | 11-1-03 | 5.03 | 1354.64 | 0.02 | 1002.75 | 283.44 | 0.00 | 0.00 | 0.74 | 0.00 | 30.53 | 0.09 |
PyⅡ | 11-1-04 | 2.84 | 918.54 | 0.00 | 80.67 | 103.31 | 0.14 | 0.02 | 0.55 | 0.00 | 13.40 | 0.88 |
PyⅡ | 11-1-05 | 6.99 | 989.06 | 0.00 | 187.83 | 101.49 | 0.09 | 0.00 | 0.66 | 0.00 | 29.49 | 0.81 |
PyⅡ | 11-2-01 | 9.01 | 1338.67 | 0.92 | 0.02 | 0.45 | 0.25 | 4.67 | 0.48 | 5.11 | 32.24 | 2.71 |
PyⅡ | 11-2-02 | 3.21 | 1139.99 | 0.20 | 0.24 | 0.15 | 0.15 | 1.21 | 0.62 | 2.20 | 62.07 | 0.56 |
PyⅡ | 11-2-03 | 1.02 | 3840.34 | 0.00 | 0.02 | 0.81 | 0.06 | 0.01 | 0.76 | 0.00 | 73.13 | 27.74 |
PyⅡ | 11-2-04 | 0.44 | 683.97 | 0.37 | 7.91 | 2.66 | 0.32 | 0.79 | 0.40 | 3.27 | 70.24 | 1.64 |
PyⅡ | 11-2-05 | 0.73 | 2138.59 | 0.01 | 0.03 | 0.45 | 0.08 | 0.12 | 0.38 | 0.26 | 1.27 | 0.14 |
PyⅡ | 2-1-01 | 11.68 | 1659.42 | 0.01 | 28.42 | 312.66 | 0.00 | 0.01 | 0.23 | 0.08 | 28.67 | 4.56 |
PyⅡ | 2-1-02 | 0.03 | 1395.53 | 0.03 | 12.64 | 327.93 | 0.27 | 0.35 | 0.53 | 0.93 | 9.29 | 0.32 |
PyⅡ | 2-1-03 | 1.94 | 634.29 | 0.00 | 3.67 | 223.35 | 0.00 | 0.00 | 0.26 | 0.00 | 6.02 | 47.72 |
PyⅡ | 2-1-04 | 1.32 | 356.84 | 0.08 | 8.09 | 195.97 | 64.76 | 0.07 | 134.84 | 0.19 | 50.08 | 11.73 |
PyⅡ | 2-1-05 | 0.02 | 1931.58 | 0.02 | 86.38 | 521.21 | 9.33 | 0.12 | 260.59 | 0.18 | 26.33 | 0.93 |
PyⅡ | 2-2-01 | 0.33 | 272.19 | 0.07 | 2.35 | 181.68 | 0.09 | 0.05 | 0.58 | 0.53 | 60.51 | 0.00 |
PyⅡ | 2-2-02 | 0.21 | 1732.37 | 0.02 | 0.92 | 174.65 | 0.63 | 0.01 | 1.17 | 0.61 | 14.42 | 0.00 |
PyⅡ | 2-2-03 | 2.66 | 406.49 | 0.32 | 3.08 | 308.84 | 0.19 | 0.52 | 0.84 | 3.64 | 92.19 | 0.00 |
PyⅡ | 2-2-04 | 0.55 | 198.45 | 0.01 | 0.35 | 113.94 | 2.05 | 0.62 | 1.48 | 1.29 | 101.22 | 0.00 |
PyⅡ | 2-2-05 | 1.88 | 1286.46 | 0.06 | 19.26 | 646.30 | 0.28 | 0.01 | 1.63 | 0.67 | 21.31 | 0.01 |
PyⅡ | 2-3-01 | 0.80 | 1731.12 | 0.09 | 753.73 | 382.41 | 0.08 | 0.18 | 0.99 | 0.72 | 127.57 | 2.96 |
PyⅡ | 2-3-02 | 0.88 | 3383.32 | 0.06 | 452.63 | 602.86 | 0.00 | 0.04 | 1.34 | 0.72 | 296.39 | 3.73 |
PyⅡ | 2-3-03 | 9.42 | 1139.36 | 1.56 | 103.24 | 145.12 | 1.11 | 3.96 | 5.88 | 10.42 | 386.24 | 0.00 |
PyⅡ | 2-3-04 | 2.30 | 929.25 | 0.37 | 20.32 | 159.79 | 0.37 | 0.35 | 2.30 | 2.13 | 0.00 | 11.51 |
PyⅡ | 2-3-05 | 0.16 | 2134.92 | 0.04 | 52.06 | 26.37 | 0.00 | 0.10 | 0.87 | 0.26 | 105.92 | 0.13 |
PyⅢ | 13-1-01 | 1.96 | 0.76 | 0.00 | 0.04 | 0.89 | 0.00 | 0.00 | 0.39 | 0.02 | 0.00 | 0.00 |
PyⅢ | 13-1-02 | 1.42 | 0.34 | 0.00 | 0.02 | 1.65 | 0.06 | 0.00 | 0.28 | 0.05 | 1.96 | 0.00 |
PyⅢ | 13-1-03 | 0.32 | 16.98 | 0.00 | 0.18 | 1.70 | 0.00 | 0.02 | 0.72 | 0.02 | 13.12 | 0.00 |
PyⅢ | 13-1-04 | 1.11 | 2.71 | 0.00 | 16.55 | 225.61 | 0.24 | 0.00 | 0.87 | 0.07 | 20.42 | 0.00 |
PyⅢ | 13-1-05 | 0.50 | 1.65 | 0.01 | 20.80 | 222.52 | 0.09 | 0.00 | 0.58 | 0.00 | 25.45 | 0.00 |
PyⅢ | 13-2-01 | 0.83 | 0.53 | 0.01 | 0.06 | 2.08 | 0.42 | 0.00 | 0.68 | 0.00 | 0.00 | 0.00 |
PyⅢ | 13-2-02 | 0.44 | 1.20 | 0.00 | 0.60 | 13.26 | 0.00 | 0.00 | 1.21 | 0.00 | 0.69 | 0.00 |
PyⅢ | 13-2-03 | 0.20 | 0.70 | 0.04 | 0.24 | 4.21 | 0.00 | 0.00 | 1.27 | 0.00 | 59.66 | 0.00 |
PyⅢ | 13-2-04 | 2.33 | 1.36 | 0.00 | 0.20 | 5.00 | 0.00 | 0.03 | 1.21 | 0.00 | 86.45 | 0.00 |
PyⅢ | 13-2-05 | 0.33 | 7.34 | 0.01 | 79.21 | 686.35 | 0.04 | 0.00 | 1.59 | 0.00 | 33.12 | 0.01 |
Sample No. | Lithology | Mineral | δ34SV-CDT (‰) | Reference | Sample No. | Lithology | Mineral | δ34SV-CDT (‰) | Reference |
---|---|---|---|---|---|---|---|---|---|
14-221 | Lamprophyre | Py | 4.5 | [23] | 14-202 | Cement | Py | 14.9 | [23] |
T16 | Xiba pluton | Py | 5.3 | [24] | 14-232 | Cement | Py | 9.8 | [23] |
T17 | Xiba pluton | Py | 6.1 | [24] | SH-90 | Cement | Py | 10.0 | [23] |
T52 | Xiba pluton | Py | 3.8 | [24] | 14-158 | Cement | Py | 11.1 | [23] |
YDZ18 | Xiba pluton | Py | 4.84 | [24] | 14-91 | Cement | Py | 12.1 | [23] |
T13 | Wallrock | Py | 10.3 | [24] | 14-151 | Cement | Py | 12.9 | [23] |
T54 | Wallrock | Py | 5.7 | [24] | 1100CM32-1 | Ore | Py | 9.68 | [7] |
T65 | Wallrock | Py | 13.5 | [24] | 1420CM43-1 | Ore | Py | 13.51 | [7] |
T66 | Wallrock | Py | 13.8 | [24] | 1600CM141-4 | Ore | Py | 11.93 | [7] |
T67 | Wallrock | Py | 9.9 | [24] | 1600CM75-1 | Ore | Py | 12.97 | [7] |
14-57 | Pyrite vein | Py | 12.7 | [23] | 2-1550-129-4 | Ore | Py | 13.94 | [7] |
14-20 | Sericite slate | Py | 11.5 | [23] | 2-1600-187-2 | Ore | Py | 11.44 | [7] |
T15 | Breccia of albitite | Py | 11.6 | [24] | 2-1600-73-1 | Ore | Py | 12.86 | [7] |
T18 | Breccia of albitite | Py | 8.7 | [24] | 2-1600-75-1 | Ore | Py | 12.00 | [7] |
T53 | Breccia of albitite | Py | 4.78 | [24] | 2-3-20-1 | Ore | Py | 10.77 | [7] |
T72 | Breccia of albitite | Py | 9.25 | [24] | 1330CM13-1 | Ore | Py | 11.97 | [7] |
T64 | Breccia of albitite | Py | 10.78 | [24] | 4CM18-3 | Ore | Py | 11.51 | [7] |
4CM38-2 | Ore | Py | 9.82 | [7] | T71 | Ore | Py | 9.63 | [24] |
AHG-5 | Ore | Py | 14.87 | [7] | YDZl | Ore | Py | 10.48 | [24] |
MGN-2 | Ore | Py | 9.25 | [7] | YDZ2 | Ore | Py | 7.93 | [24] |
XMG-3 | Ore | Py | 13.75 | [7] | YDZ3 | Ore | Py | 11.26 | [24] |
V-1 | Ore | Py | 10.83 | [7] | YDZ4 | Ore | Py | 11.54 | [24] |
V-9 | Ore | Py | 8.29 | [7] | YDZ20 | Ore | Py | 8.48 | [24] |
T12 | Ore | Py | 8.0 | [24] | YDZ35 | Ore | Py | 10.53 | [24] |
T19 | Ore | Py | 8.8 | [24] | Xishi | Ore | Py | 12.91 | [24] |
T20 | Ore | Py | 8.3 | [24] | Xishi | Ore | Py | 12.21 | [24] |
T24 | Ore | Py | 14.81 | [24] | Xishi | Ore | Py | 10.47 | [24] |
T49 | Ore | Py | 9.47 | [24] | shw-02-DT2-1 | Ore | PyⅡ | 11.5 | This study |
T51 | Ore | Py | 9.47 | [24] | shw-02-DT2-2 | Ore | PyⅡ | 14.5 | This study |
T57 | Ore | Py | 2.6 | [24] | shw-02-DT2-4 | Ore | PyⅡ | 12.7 | This study |
T60 | Ore | Py | 12.3 | [24] | shw-02-DT2-5 | Ore | PyⅡ | 11.7 | This study |
T63 | Ore | Py | 4.4 | [24] | shw-02-DT2-5 | Ore | PyⅡ | 11.1 | This study |
T68 | Ore | Py | 10.84 | [24] | shw-08-DT11-1 | Ore | PyⅡ | 15.2 | This study |
T69 | Ore | Py | 8.75 | [24] | shw-08-DT11-2 | Ore | PyⅡ | 13.4 | This study |
T70 | Ore | Py | 10.03 | [24] | shw-10-DT13-1 | Cement | PyⅢ | 11.1 | This study |
14-42 | Cement | Anh | 26.2 | [23] | shw-10-DT13-1 | Cement | PyⅢ | 13.5 | This study |
14-43 | Cement | Anh | 24.2 | [23] | shw-10-DT13-1 | Cement | PyⅢ | 11.5 | This study |
14-46 | Cement | Anh | 25.2 | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, X.; Li, J.; He, H.; Chao, H.; Yi, P. Constraints on the Genesis of the Shuangwang Gold Deposit in Qinling Orogen, Central China: Evidence from In Situ Trace Element and Sulfur Isotope. Minerals 2022, 12, 995. https://doi.org/10.3390/min12080995
Yang J, Yang X, Li J, He H, Chao H, Yi P. Constraints on the Genesis of the Shuangwang Gold Deposit in Qinling Orogen, Central China: Evidence from In Situ Trace Element and Sulfur Isotope. Minerals. 2022; 12(8):995. https://doi.org/10.3390/min12080995
Chicago/Turabian StyleYang, Junjie, Xingke Yang, Jianbo Li, Hujun He, Huixia Chao, and Pengfei Yi. 2022. "Constraints on the Genesis of the Shuangwang Gold Deposit in Qinling Orogen, Central China: Evidence from In Situ Trace Element and Sulfur Isotope" Minerals 12, no. 8: 995. https://doi.org/10.3390/min12080995
APA StyleYang, J., Yang, X., Li, J., He, H., Chao, H., & Yi, P. (2022). Constraints on the Genesis of the Shuangwang Gold Deposit in Qinling Orogen, Central China: Evidence from In Situ Trace Element and Sulfur Isotope. Minerals, 12(8), 995. https://doi.org/10.3390/min12080995