The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt
Abstract
:1. Introduction
2. Geological Setting
- (i)
- Syn-D3 (ca. 320 to 310 Ma)—two-mica granites, strongly peraluminous, with aluminum-potassic affinity, representing magmas derived from partial melting of metapelites;
- (ii)
- Late-D3 (ca. 310 to 305 Ma)—moderately peraluminous and aluminum-potassium biotitic monzogranites/granodiorites with aluminum-potassic affinity, resulting from crystallization of magmas generated from partial melting of metagreywacke and felsic meta-igneous materials;
- (iii)
- Late- to post-D3 (ca. 300 Ma)—peraluminous two-mica leucogranite with high aluminum-potassic affinity;
- (iv)
- Post-D3 (ca. 296 to 290 Ma)—compositionally evolved granitoids with an iron-potassic sub-alkaline affinity as products from the partial melting of lower crustal rocks.
3. Sampling and Analytical Methods
4. Results
4.1. Major and Minor Elements
4.2. Trace Elements
4.3. Rare Earth Elements
5. Discussion
5.1. Magmatic Differentiation and Metal Specialization: Correlation with TE1,3
5.2. The TE1,3 as an Exploration Vector for Granite-Related Ore Systems
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linnen, R.L.; Van Lichtervelde, M.; Černŷ, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Gunn, G. Critical Metals Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dehainea, Q.; Filippova, L.O.; Glass, H.J.; Rollinson, G. Rare-metal granites as a potencial source of critical metals: A geometallurgical case study. Ore Geol. Rev. 2019, 104, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Ballouard, C.; Massuyeau, M.; Elburg, M.A.; Tappe, S.; Viljoen, F.; Brandenburg, J. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth Sci. Rev. 2020, 203, 103115. [Google Scholar] [CrossRef]
- Cerný, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-related ore deposits. In Economic Geology; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.R., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; Volume 100th Anniversary, pp. 337–370. [Google Scholar]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Ahmed, A.F.; Hauzenberger, C. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geol. Rev. 2017, 88, 1–22. [Google Scholar] [CrossRef]
- Schuiling, R.D. Tin belts on the continents around the Atlantic Ocean. Econ. Geol. 1967, 62, 540–550. [Google Scholar] [CrossRef]
- Derré, C. Caracteristiques de la distribution des gisements à etain et tungstene dans l’ouest de l’Europe. Miner. Depos. 1982, 17, 55–77. [Google Scholar] [CrossRef]
- Marignac, C.; Cuney, M. Ore deposits of the French Massif Central: Insight into the metallogenesis of the Variscan collision belt. Miner. Depos. 1999, 34, 472–504. [Google Scholar] [CrossRef]
- Blundell, D.; Arndt, N.; Cobbold, P.R.; Heinrich, C. Geodynamics and ore deposit evolution in Europe. Ore Geol. Rev. 2005, 27, 345. [Google Scholar] [CrossRef]
- De Vos, W.; Batista, M.J.; Demetriades, A.; Duris, M.; Lexa, J.; Lis, J.; Marsina, K.; O’Connor, P.J. Metallogenic mineral provinces and world class ore deposits in Europe. In IUSGS/IAGC Global Geochemical Baselines; EuroGeoSurveys: Brussels, Belgium, 2005. [Google Scholar]
- Kerrich, R.; Goldfarb, R.J.; Richards, J.P. Metallogenic provinces in an evolving geodynamic framework. In Economic Geology; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.R., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; Volume 100th Anniversary, pp. 1097–1136. [Google Scholar]
- Romer, R.L.; Thomas, R.; Stein, H.J.; Rhede, D. Dating multiply overprinted Sn-mineralized granites–examples from the Erzgebirge, Germany. Miner. Depos. 2007, 42, 337–359. [Google Scholar] [CrossRef]
- Harlaux, M.; Romer, R.L.; Mercadier, J.; Morloti, C.; Marignac, C.; Cuney, M. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Miner. Depos. 2018, 53, 21–51. [Google Scholar] [CrossRef]
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tudur, J.; Galiegue, X. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef] [Green Version]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Bau, M. The lanthanide tetrad effect in highly evolved felsic igneous rocks—A reply to the comment by Y. Pan. Contrib. Mineral. Petrol. 1997, 128, 409–412. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Romer, R.L.; Pichavant, M. Rare metal (Sn, W, Ta-Nb, Li) granites and pegmatites. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 840–846. [Google Scholar]
- Masuda, A.; Kawakami, O.; Dohmoto, Y.; Takenaka, T. Lanthanide tetrad effects in nature: Two mutually opposite types W and M. Geochem. J. 1987, 21, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Masuda, A.; Ikeuchi, Y. Lanthanide tetrad effect observed in marine environments. Geochem. J. 1978, 13, 19–22. [Google Scholar] [CrossRef]
- Masuda, A.; Akagi, T. Lanthanide tetrad effect observed in leucogranites from China. Geochem. J. 1990, 23, 245–253. [Google Scholar] [CrossRef]
- Akagi, T.; Nakai, S.; Shimiuzu, H.; Masuda, A. Constraints on the geochemical stage causing tetrad effect in kimuraite: Comparative studies on kimuraite and its related rocks, from REE pattern and Nd isotope ratio. Geochem. J. 1996, 30, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Niu, H.; Shan, Q.; Sun, W. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr–REE–Nb mineralization. Miner. Depos. 2014, 49, 451–470. [Google Scholar] [CrossRef]
- Badanina, E.V.; Sitnikova, M.A.; Gordienko, V.V.; Melcher, F.; Gäbler, H.E.; Lodziak, J.; Syritso, L.F. Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia). Ore Geol. Rev. 2015, 64, 720–735. [Google Scholar] [CrossRef]
- Peretyazhako, I.S.; Savina, E.A. Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology 2010, 18, 514–543. [Google Scholar] [CrossRef]
- Monecke, T.; Kempe, U.; Monecke, J.; Sala, M.; Wolf, D. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 2002, 66, 1185–1196. [Google Scholar] [CrossRef]
- Monecke, T.; Dulski, P.; Kempe, U. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn–W deposit, Germany. Geochim. Cosmochim. Acta 2007, 71, 335–353. [Google Scholar] [CrossRef]
- Pan, Y.M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect—A discussion of the article by M. Bau (1996). Contrib. Mineral. Petrol. 1997, 128, 405–408. [Google Scholar] [CrossRef]
- Pan, Y.M.; Breaks, F.W. Rare-earth elements in fluorapatite, Separation Lake area, Ontario; evidence for S-type granite-rare-element pegmatite linkage. Can. Mineral. 1997, 35, 659–671. [Google Scholar]
- Ribeiro, A.; Iglesias, M.; Ribeiro, M.; Pereira, E. Modéle géodynamique des Hercynides Ibériques. Comun. Serv. Geol. Port. 1983, 64, 191–214. [Google Scholar]
- Ribeiro, A.; Quesada, C.; Dallmeyer, R. Geodynamic evolution of the Iberian Massif. In Pre-Mesozoic Geology of Iberia; Springer: Berlin, Germany, 1990; pp. 399–409. [Google Scholar]
- Ribeiro, A.; Munhá, J.; Dias, R.; Mateus, A.; Pereira, E.; Ribeiro, M.L.; Fonseca, P.; Araújo, A.; Oliveira, J.T.; Romão, J.; et al. Geodynamic evolution of the SW Europe Variscides. Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Rubio Pascual, F.J.; Díez Montes, A.; Díez Fernández, R.; Gómez Barreiro, J.; Dias da Silva, Í.; González Clavijo, E.; Ayarza, P.; Alcock, J.E. The late Variscan HT/LP metamorphic event in NW and Central Iberia: Relationships to crustal thickening, extension, orocline development and crustal evolution. Lond. Geol. Soc. 2014, 405, 225–247. [Google Scholar] [CrossRef]
- Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N. A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics 2016, 681, 170–194. [Google Scholar] [CrossRef]
- Ribeiro, A. Contribuition à l’étude tectonique de Trás-os-Montes Oriental. Comun. Serv. Geol. Port. 1974, 24, 1–168. [Google Scholar]
- Noronha, F.; Ramos, J.; Rebelo, J.; Ribeiro, A.; Ribeiro, M. Essai de corrélation des phases de déformation hercynienne dans le Nord-Ouest Péninsulaire. Bol. Soc. Geol. Port. 1979, 21, 227–237. [Google Scholar]
- Dias, R.; Ribeiro, A. The Ibero-Armorican Arc: A collision effect against an irregular continent? Tectonophysics 1995, 246, 113–128. [Google Scholar] [CrossRef]
- Azevedo, M.; Aguado, B. Origem e instalação de granitóides variscos na Zona Centro-Ibérica. In Geologia de Portugal. Geologia Pré-Mesozoica de Portugal; Escolar Editora: Lisbon, Portugal, 2013; Volume 1, pp. 377–401. [Google Scholar]
- Azor, A.; Dias da Silva, Í.; Gómez Barreiro, J.; González-Clavijo, E.; Martínez Catalán, J.R.; Simancas, J.F.; Martínez Poyatos, D.; Pérez-Cáceres, I.; González Lodeiro, F.; Expósito, I.; et al. Deformation and Structure. In The Geology of Iberia: A Geodynamic Approach, Volume 2, The Variscan Cycle; Regional Geology Reviews; Springer: Gewerbestrasse, Switzerland, 2019; Volume 1, pp. 307–348. [Google Scholar]
- Dallmeyer, R.D.; Martínez-Catalán, J.R.; Arenas, R.; Gil-Ibarguchi, J.I.; Gutiérrez-Alonso, G.; Farias, P.; Bastida, F. Diachronous Variscan tectonothermal activity in the NW Iberian Massif; evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef] [Green Version]
- Díez Fernández, R.; Pereira, M.F. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and U-Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics 2016, 691, 290–310. [Google Scholar] [CrossRef]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Noronha, F.; Ribeiro, M.; Almeida, A.; Dória, A.; Guedes, A.; Lima, A.; Martins, H.; Sant’Ovaia, H.; Nogueira, P.; Martins, T.; et al. Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (Norte de Portugal). In Geologia de Portugal: Geologia Pré-Mesozoica de Portugal; Escolar Editora: Lisbon, Portugal, 2013; Volume 1, pp. 403–438. [Google Scholar]
- Ribeiro, A.; Antunes, M.T.; Ferreira, M.P.; Rocha, R.B.; Soares, A.F.; Zbyszewski, G.; Almeida, F.M.; Carvalho, D.; Monteiro, J.H. Introduction à la Géologie Générale du Portugal. Serv. Geol. Port. 1979, 1–114. [Google Scholar]
- Dias da Silva, Í.; González Clavijo, E.; Díez-Montes, A. The collapse of the Variscan belt: A Variscan lateral extrusion thin-skinned structure in NW Iberia. Int. Geol. Rev. 2021, 63, 659–695. [Google Scholar] [CrossRef]
- Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551. [Google Scholar] [CrossRef]
- Iglesias, M.; Ribeiro, A. Zones de cisaillement ductile dans l’arc Ibero-Armorican. Serv. Geol. Port. 1981, 67, 85–87. [Google Scholar]
- González Clavijo, E.; Díez Balda, M.A.; Álvarez, F. Structural study of a semiductile strike-slip system in the Central Iberian Zone (Variscan Fold Belt, Spain): Structural controls on gold deposits. Geol. Runds. 1993, 82, 448–460. [Google Scholar] [CrossRef]
- Pereira, E.; Ribeiro, A.; Meireles, C. Cisalhamentos hercínicos e controlo de mineralizações de Sn-W, Au e U na zona centro-Ibérica em Portugal. Cuad. Lab. Xeol. Laxe Coruña 1993, 18, 89–119. [Google Scholar]
- Valle Aguado, B.; Martínez Catalán, J.R.; Azevedo, M.R. Structure of the western termination of the Juzbado-Penalva do Castelo Shear Zone (Western Iberian Massif). In Variscan-Appalachian Dynamics: The Building of the Upper Paleozoic basement; Program and Abstracts; Basement Tectonics: A Coruña, Spain, 2000; Volume 15, pp. 287–291. [Google Scholar]
- Gutiérrez-Alonso, G.; Collins, A.S.; Fernández-Suárez, J.; Pastor-Galán, D.; González-Clavijo, E.; Jourdan, F.; Weil, A.B.; Johnston, S.T. Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophysics 2015, 643, 44–54. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Dias da Silva, Í.; Groenewegen, T.; Krijgsman, W. Tangled up in folds: Tectonic significance of superimposed folding at the core of the Central Iberian curve (West Iberia). Int. Geol. Rev. 2019, 61, 240–255. [Google Scholar] [CrossRef]
- Iglésias, M.; Choukroune, P. Shear zones in the Iberian Arc. J. Struct. Geol. 1980, 2, 63–68. [Google Scholar]
- Ferreira, N.; Iglesias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In Geologia de Los Granitoides y Rocas Associadas del Macizo Hespérico Libro Homenaje a LC Garcia de Figuerola; Bea, F., Carnicero, E., Gonzalo, J.C., Plaza, M.L., Rodríguez, M.D., Eds.; Rueda: Madrid, Spain, 1987; pp. 37–53. [Google Scholar]
- Dias, G.T.; Leterrier, J.; Mendes, A.; Simões, P.P.; Bertrand, J.M. U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Dias, G.; Simões, P.; Ferreira, N.; Leterrier, J. Mantle and crustal sources in the genesis of late-Hercynian granitoids (NW Portugal): Geochemical and Sr-Nd isotopic constraints. Gond. Res. 2002, 5, 287–305. [Google Scholar] [CrossRef]
- Almeida, A.; Martins, H.; Noronha, F. Hercynian acid magmatism and related mineralisations in Northern Portugal. Gond. Res. 2002, 5, 423–434. [Google Scholar] [CrossRef]
- Valle Aguado, B.; Azevedo, M.R.; Schaltegger, U.; Martínez-Catalán, J.R.; Nolan, J. U/Pb zircon and monazite geochronology of Variscan magmatism related to synconvergence extension in Central Northern Portugal. Lithos 2005, 82, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Martins, H.; Sant’Ovaia, H.; Noronha, F. Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: An integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos 2009, 111, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Martins, H.; Sant’Ovaia, H.; Abreu, J.; Oliveira, M.; Noronha, F. Emplacement of the Lavadores granite (NW Portugal): U/Pb and AMS results. Comptes Rendus Geosci. 2011, 343, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Marques, F.O.; Mateus, A.; Tassinari, C.C. The Late-Variscan fault network in central-northern Portugal (NW Iberia): A re-evaluation. Tectonophysics 2002, 359, 255–270. [Google Scholar] [CrossRef]
- Lagarde, J.L.; Capdevila, R.; Fourcade, S. Granites et collision continentale: L’exemple des granitoides carboniferes dans la chaine hercynienne ouesteuropéenne. Bull. Soc. Géol. 1992, 163, 597–610. [Google Scholar]
- Escuder Viruete, J. Hornblende-bearing leucosome development during syn-orogenic crustal extension in the Tormes Gneiss Dome, NW Iberian Massif, Spain. Lithos 1999, 46, 751–772. [Google Scholar] [CrossRef]
- López-Plaza, M.; Peinado, M.; López-Moro, F.J.; Rodríguez Alonso, M.D.; Carnicero, A.; Franco, P.; Gonzalo, J.C. Contrasting mantle sources and processes involved in a peri-Gondwanan terrane: A case study of pre-Variscan mafic intrusives from the autochthon of the Central Iberian Zone. Geol. Soc. Am.-Spec. Pap. 2007, 423, 297–313. [Google Scholar]
- Fernández-Suárez, J.; Gutierrez-Alonso, G.; Johnston, S.T.; Jeffries, T.E.; Pastor-Galán, D.; Jenner, G.A.; Murphy, J.B. Iberian late-Variscan granitoids: Some considerations on crustal sources and the significance of “mantle extraction ages”. Lithos 2011, 123, 121–132. [Google Scholar] [CrossRef] [Green Version]
- López-Moro, F.J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R.L. Crustal melting and recycling: Geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U–Pb LA-ICP-MS study. Int. J. Earth Sci. 2017, 107, 985–1004. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P. Les décrochements Tardi-Hercyniens du Sud-ouest de l’Europe. Géometrie et essai de reconstitution des conditions de la déformation. Tectonophysics 1975, 25, 139–171. [Google Scholar] [CrossRef]
- Sousa, M. Considerações sobre a estratigrafia do Complexo Xisto-Grauváquico (CXG) e a sua relação com o Paleozóico Inferior. Quad. Geol. Ibérica 1984, 9, 9–36. [Google Scholar]
- Pereira, E. Estudo Geológico–Estrutural da Região de Celorico de Basto e a Sua Interpretação Geodinâmica. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 1987; p. 274. [Google Scholar]
- Sousa, M.; Sequeira, A. Carta Geológica de Portugal à escala 1/50.000, Folha 10-D–Alijó. Serv. Geol. Port. 1987, 50. [Google Scholar]
- Meireles, C. New data on the lithostratigraphy of beiras Group (Schist Greywacke complex) in the region of Góis-Arganil-Pampilhosa da Serra (Central Portugal). Cad. Lab. Xeolóxico Laxe 2013, 37, 105–124. [Google Scholar] [CrossRef]
- Silva, A. A Litostratigrafia e Estrutura do Supergrupo Dúrico-Beirão (Complexo Xisto-Grauváquico), em Portugal, e sua correlação com as correspondentes sucessões em Espanha. Bolet. Minas 2013, 48, 97–142. [Google Scholar]
- San José, M.A.; Pieren, A.P.; García-Hidalgo, J.F.; Vilas, L.; Herranz, P.; Pelaez, J.R.; Perejon, A. Ante-Ordovician Stratigraphy. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez García, E., Eds.; Springer: Berlin, Germany, 1990; pp. 147–159. [Google Scholar]
- Valladares, M.I.; Barba, P.; Ugidos, J.M.; Colmenero, J.R.; Armenteros, I. Upper Neoproterozoic–Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): Sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones. Int. J. Earth Sci. 2000, 89, 2–20. [Google Scholar] [CrossRef]
- Ugidos, J.M.; Barba, P.; Valladares, M.I. Chapter Four—Review of the Upper Ediacaran-Lower Cambrian detrital series in Central and North Iberia: NE Africa as possible source area. In Stratigraphy & Timescales; Montenari, M., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 5, pp. 147–268. [Google Scholar]
- Castro, A.; Patiño Douce, A.E.; Corretgé, L.G.; De La Rosa, J.D.; El-Biad, M.; El-Hmidi, H. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis. Contrib. Mineral. Petrol. 1999, 135, 255–276. [Google Scholar] [CrossRef]
- Villaseca, C.; Downes, H.; Pin, C.; Barbero, L. Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite-Granite Linkage: Inferences from Granulitic Xenoliths. J. Petrol. 1999, 40, 1465–1496. [Google Scholar] [CrossRef]
- Ribeiro, M.; Castro, A.; Almeida, A.; González Menéndez, L.; Jesus, A.; Lains, J.A.; Lopes, J.C.; Martins, H.C.B.; Mata, J.; Mateus, A.; et al. Variscan Magmatism. In The Geology of Iberia: A Geodynamic Approach, Volume 2, The Variscan Cycle; Regional Geology Reviews; Springer: Gewerbestrasse, Switzerland, 2019; Volume 1, pp. 497–526. [Google Scholar]
- Pinto, M.S.; Casquet, C.; Ibarrola, E.; Corretgé, L.S.; Ferreira, M.P. Síntese geocronológica dos granitóides do Maciço Hespérico. In Geologia de los Granitoides y Rocas Associadas del Macizo Hespérico Libro Homenaje a L.C. Garcia de Figuerola; Bea, F., Carnicero, E., Gonzalo, J.C., López Plaza, M., Rodríguez, M.D., Eds.; Rueda: Madrid, Spain, 1987; pp. 69–86. [Google Scholar]
- Dias, G.T. Fontes de granitóides hercínicos da Zona Centro-Ibérica (Norte de Portugal): Evidências isotópicas (Sr, Nd). In Geoquímica e Petrogénese de Rochas Granitóides; Neiva, A.M.R., Ed.; Academia das Ciências de Lisboa: Lisboa, Portugal, 2001; pp. 21–43. [Google Scholar]
- Azevedo, M.; Aguado, B. Origem e instalação de granitóides variscos na Zona Centro Ibérica. In Geologia de Portugal no contexto da Ibéria; Dias, R., Araújo, A., Terrinha, P., Kulberg, C., Eds.; University Évora: Évora, Portugal, 2006; pp. 107–121. [Google Scholar]
- Mateus, A.; Noronha, F. Sistemas mineralizantes epigenéticos na Zona Centro-Ibérica; expressão da estruturação orogénica Meso-a Tardi-Varisca. In Ciências Geológicas: Ensino e Investigação e sua História; Cotelo Neiva, J.M., Ribeiro, A., Mendes Victor, L., Noronha, F., Ramalho, M., Eds.; Associação Portuguesa de Geólogos and Sociedade Geológica de Portugal, Lisboa: Lisbon, Portugal, 2010; Volume II, pp. 47–61. [Google Scholar]
- Inverno, C.; Ribeiro, M.L. Fracturação e cortejo filoniano nas Minas da Argemela (Fundão). Comun. Serv. Geol. Port. 1980, 66, 185–193. [Google Scholar]
- Ribeiro, A.; Pereira, E. Controles paleogeográficos, petrológicos e estruturais na génese dos jazigos portugueses de estanho e volfrâmio. Geonovas 1982, 1, 23–31. [Google Scholar]
- Derré, C.; Lécolle, M.; Roger, G.; Carvalho, J. Tectonics, magmatism, hydrothermalism and sets of flat joints locally filled by Sn-W aplite-pegmatite and quartz veins; southeastern border of the Serra da Estrela granitic massif (Beira Baixa, Portugal). Ore Geol. Rev. 1986, 1, 43–56. [Google Scholar] [CrossRef]
- Ribeiro, M.L. Modelos de implantação dos granitos variscos portugueses. In Geoquímica e Petrogénese de Rochas Granitóides; Neiva, A.M.R., Ed.; Academia das Ciências de Lisboa: Lisboa, Portugal, 2001; pp. 33–52. [Google Scholar]
- Cathelineau, M.; Boiron, M.C.; Marignac, C.; Dour, M.; Dejean, M.; Carocci, E.; Truche, L.; Pinto, F. High pressure and temperatures during the early stages of tungsten deposition at Panasqueira revealed by fluid inclusions in topaz. Ore Geol. Rev. 2020, 126, 103741. [Google Scholar] [CrossRef]
- Noronha, F. Estudo Metalogénico da Área Tunstífera da Borralha. Ph.D. Thesis, University Porto, Porto, Portugal, 1983; p. 413. [Google Scholar]
- Noronha, F.; Vindel, E.; López, J.A.; Dória, A.; Garcia, E.; Boiron, M.-C.; Cathelineau, M. Fluids related to tungsten ore deposits in Northern Portugal and Spanish Central System: A comparative study. Rev. Soc. Geol. España 1999, 12, 397–403. [Google Scholar]
- Conde, L.; Pereira, V.; Ribeiro, A.; Thadeu, D. Jazigos Hipogénicos de Estanho e volfrâmio. In I Congresso Hispano-Luso-Americano de Geologia Económica; Direção Geral de Minas e Serviços Geológicos: Lisboa, Portugal, 1979; p. 81. [Google Scholar]
- Thadeu, D. Características da mineralização hipogénica estano-volframítica portuguesa. Bol. Ord. Eng. 1965, 10, 61–81. [Google Scholar]
- Clark, A.H. Preliminary of the temperatures and confining pressures of granite emplacement and mineralization, Panasqueira, Portugal. Trans. Inst. Min. Metall. 1964, 73, 813–824. [Google Scholar]
- Portugal Ferreira, M.; Costa, V.; Regêncio Macedo, C.A.; Gama Pereira, L. Datações K-Ar em biotite das rochas granitóides da Cova da Beira (Portugal Central). Mem. Not. Publ. Mus. Lab. Mineral. Geol. 1977, 84, 39–48. [Google Scholar]
- Kelly, W.C.; Reye, R.O. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ. Geol. 1979, 74, 1721–1882. [Google Scholar] [CrossRef]
- Bussink, R.W. Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geol. Ultraiect. 1984, 33, 1–159. [Google Scholar]
- Priem, D.; Tex, T. Tracing crustal evolution in the NW Iberian Peninsula through the Rb-Sr and U-Pb systematics of Paleozoic granitoids: A review. Phys. Earth Planet. Inter. 1984, 35, 121–130. [Google Scholar] [CrossRef]
- Pereira, A.; Pereira, L.; Macedo, C. Os plutonitos da zebreira (Castelo Branco): Idade e enquadramento estructural. Mem. Not. Publ. Mus. Lab. Mineral. Geol. 1986, 101, 21–31. [Google Scholar]
- Antunes, I.M.; Neiva, A.M.; Silva, M.M.; Corfu, F. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos 2008, 103, 445–465. [Google Scholar] [CrossRef] [Green Version]
- Antunes, I.M.; Neiva, A.M.; Silva, M.M.; Corfu, F. The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 2009, 111, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Antunes, I.M.; Neiva, A.M.; Corfu, F. New emplacement age to the Fundão pluton (central Portugal): U-Pb isotopic data. In Proceedings of the European Mineralogical Conference, Frankfurt, Germany, 2–6 September 2012. [Google Scholar]
- Antunes, I.M.; Neiva, A.M.; Ramos, J.M.; Silva, P.B.; Silva, M.M.; Corfu, F. Petrogenetic links between lepidolite-subtype aplite-pegmatite, aplite veins and associated granites at Segura (central Portugal). Geochemistry 2013, 73, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Antunes, I.M. Características geoquímicas e geocronológicas do plutão de Fundão—Implicações geotectónicas. In Proceedings of the XII Congresso Ibérico de Geoquímica, Évora, Portugal, 22–26 September 2019; pp. 133–136. [Google Scholar]
- Martins Peres, A.; Caraça Valente, A.J.; Lucas Gonçalves, J. Carta Geológica de Portugal à escala 1/50.000, Folha 21-B—Quadrasais. Serv. Geol. Port. 1960. [Google Scholar]
- Avila Martins, J.; Cândido de Medeiros, A.; Peres, A.; Pilar, L.; Pinto Mesquita, L. Carta Geológica de Portugal à escala 1/50.000, Folha 21-A- Sabugal. Serv. Geol. Port. 1964. [Google Scholar]
- Ribeiro, O.; Ribeiro Ferreira, C. Carta Geológica de Portugal à escala 1/50.000, Folha 24-D—Castelo Branco. Serv. Geol. Port. 1966. [Google Scholar]
- Perdigão, J.C.; Moreira, P.A. Carta Geológica de Portugal à escala 1/50.000, Folha 21-D—Vale Feitoso. Serv. Geol. Port. 1975. [Google Scholar]
- Teixeira, C.; de Carvalho, H.; Paula Santos, J. Carta Geológica de Portugal à escala 1/50.000, Folha 20-B—Covilhã. Serv. Geol. Port. 1975. [Google Scholar]
- Oliveira, J.T.; Pereira, E.; Ramalho, M.; Antunes, M.T.; Monteiro, J.H. Carta Geológica de Portugal à escala 1/500.000. Serv. Geol. Port. 1992. [Google Scholar]
- Sequeira, A.; Proença Cunha, P.; Ribeiro, M. Carta Geológica de Portugal à escala 1/50.000, Folha 25-B—Salvaterra do Extremo. Inst. Geol. Min. 1999. [Google Scholar]
- Romão, J.; Ferreira da Silva, A.; Proença Cunha, P.; Pereira, A. Carta Geológica de Portugal à escala 1/50.000, Folhas 25-C, 25-D e 29-A—Rosmaninhal, Segura e Retorta. Lab. Geol. Min. 2010. [Google Scholar]
- Gonçalves, A.; Sant’Ovaia, H.; Noronha, F. Geochemical Signature and Magnetic Fabric of Capinha Massif (Fundão, Central Portugal): Genesis, Emplacement and Relation with W–Sn Mineralizations. Minerals 2020, 10, 557. [Google Scholar] [CrossRef]
- Neiva, A.M.; Costa Campos, T. Genesis of the zoned granitic pluton of Penamacor-Monsanto, Central Portugal. Mem. Not. Publ. Mus. Lab. Mineral. Geol. 1992, 114, 51–68. [Google Scholar]
- Ribeiro da Costa, I.; Antunes, I.M.; Mourão, C.; Recio, C.; Guimarães, F.; Ramos, J.F.; Barriga, F.J.A.S. Contact metamorphism associated to the Penamacor-Monsanto granitic intrusion (Central Portugal): Geochemical, isotopic and mineralogical features. J. Iber. Geol. 2018, 44, 335–353. [Google Scholar] [CrossRef]
- Michaud, J.A.S.; Pichavant, M. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (Central Portugal). Geochim. Cosmochim. Acta 2020, 289, 130–157. [Google Scholar] [CrossRef]
- Marignac, C.; Cuney, M.; Cathelineau, M.; Lecomte, A.; Carocci, E.; Pinto, F. The Panasqueira Rare Metal Granite Suites and Their Involvement in the Genesis of the World-Class Panasqueira W–Sn–Cu Vein Deposit: A Petrographic, Mineralogical, and Geochemical Study. Minerals 2020, 10, 562. [Google Scholar] [CrossRef]
- Debon, F.; Lefort, P. A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications. Bul. Min. 1988, 111, 493–510. [Google Scholar] [CrossRef]
- Shand, S.J. Eruptive Rocks. Their Genesis Composition. Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1943. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Argulus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Frost, B.R.; Frost, C.D. A geochemical classification for feldspathic igneous rocks. J. Petrol. 2008, 49, 1955–1969. [Google Scholar] [CrossRef]
- El Bouseily, A.; El Sokkary, A. The relation between Rb, Ba, and Sr in granitic rocks. Geochem. Geol. 1975, 16, 207–219. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Cuney, M. Felsic magmatism and uranium deposits. Bull. Soc. Géol. France 2014, 185, 75–92. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treat. Geoch. 2014, 4, 1–51. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Yuan, S.D.; Williams-Jones, A.E.; Mao, J.W.; Zhao, P.L.; Yan, C.; Zhang, D.L. The origin of the Zhangjianlong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Econ. Geol. 2018, 113, 1193–1208. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Pereira, M.F.; Rodríguez, C.; Fernández, C.; de la Rosa, J.D. Atypical peri-Gondwanan granodiorite-tonalite magmatism from Southern Iberia. Origin of magmas and implications. Lithos 2020, 372–373, 1–14. [Google Scholar] [CrossRef]
- López-Moro, F.J.; Polonio, F.G.; González, T.L.; Contreras, J.L.S.; Fernández, A.F.; Benito, M.C.M. Ta and Sn concentration by muscovite fractionation and degassing in a lens-like granite body: The case study of the Penouta rare-metal albite granite (NW Spain). Ore Geol. Rev. 2017, 82, 10–30. [Google Scholar] [CrossRef]
- Roda-Robles, E.; Villaseca, C.; Pesquera, A.; Gil-Crespo, P.P.; Vieira, R.; Lima, A.; Garate-Olave, I. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol. Rev. 2018, 95, 408–430. [Google Scholar] [CrossRef]
- Audétat, A.; Günther, D.; Heinrich, C.A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-WF-mineralized Mole Granite (Australia). Geoch. Cosm Acta 2000, 64, 3373–3393. [Google Scholar] [CrossRef] [Green Version]
- Simons, B.; Andersen, J.C.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous early permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos 2017, 278, 491–512. [Google Scholar] [CrossRef]
- Michaud, J.A.S.; Gumiaux, C.; Pichavant, M.; Gloaguen, E.; Marcoux, E. From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geol. Rev. 2020, 116, 103215. [Google Scholar] [CrossRef]
- Zhao, P.L.; Zajacz, Z.; Tsay, A.; Yuan, S.D. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochim. Cosmoch. Acta 2022, 316, 331–346. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, I.; Mateus, A.; Cathelineau, M.; Boiron, M.C.; Ribeiro da Costa, I.; Dias da Silva, Í.; Gaspar, M. The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt. Minerals 2022, 12, 1067. https://doi.org/10.3390/min12091067
Martins I, Mateus A, Cathelineau M, Boiron MC, Ribeiro da Costa I, Dias da Silva Í, Gaspar M. The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt. Minerals. 2022; 12(9):1067. https://doi.org/10.3390/min12091067
Chicago/Turabian StyleMartins, Ivo, António Mateus, Michel Cathelineau, Marie Christine Boiron, Isabel Ribeiro da Costa, Ícaro Dias da Silva, and Miguel Gaspar. 2022. "The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt" Minerals 12, no. 9: 1067. https://doi.org/10.3390/min12091067
APA StyleMartins, I., Mateus, A., Cathelineau, M., Boiron, M. C., Ribeiro da Costa, I., Dias da Silva, Í., & Gaspar, M. (2022). The Lanthanide “Tetrad Effect” as an Exploration Tool for Granite-Related Rare Metal Ore Systems: Examples from the Iberian Variscan Belt. Minerals, 12(9), 1067. https://doi.org/10.3390/min12091067