Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flotation Tests
3. Results and Discussion
3.1. The Entrainment Behavior of Single Gangue Mineral Flotation
3.1.1. Particle Size
3.1.2. Pulp Density
3.1.3. Frother
3.1.4. Collector
3.2. The Effect of Flake Graphite on the Water Recovery in Froth
3.3. The Effect of Flake Graphite on the Entrainment Behavior of Gangue Mineral
3.3.1. Particle Size
3.3.2. Pulp Density
3.4. Flotation of Mixed Minerals of the Same Particle Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- Tamashausky, A.V. Graphite: A Multifunctional Additive for Paint and Coatings. Am. Ceram. Soc. Bull. 1998, 77, 102–104. [Google Scholar]
- Crossley, P. Graphite—High-tech supply sharpens up. Ind. Miner. 2000, 398, 31–47. [Google Scholar]
- Chelgani, S.C.; Rudolph, M.; Kratzsch, R.; Sandmann, D.; Gutzmer, J. A Review of Graphite Beneficiation Techniques. Miner. Process. Extr. Metall. Rev. 2016, 37, 58–68. [Google Scholar] [CrossRef]
- Sun, K.K.; Qiu, Y.S.; Zhang, L.Y. Preserving Flake Size in an African Flake Graphite Ore Beneficiation Using a Modified Grinding and Pre-Screening Process. Minerals 2017, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Wakamatsu, T.; Numata, Y. Flotation of graphite. Miner. Eng. 1991, 4, 975–982. [Google Scholar] [CrossRef]
- Leja, J. Surface Chemistry of Froth Flotation; Springer: New York, NY, USA, 1982. [Google Scholar]
- Jara, A.D.; Woldetinsae, G.; Betemariam, A.; Kim, J.Y. Mineralogical and petrographic analysis on the flake graphite ore from Saba Boru area in Ethiopia. Int. J. Min. Sci. Technol. 2020, 30, 715–721. [Google Scholar] [CrossRef]
- Peng, W.; Qiu, Y.; Zhang, L.; Guan, J.; Song, S. Increasing the Fine Flaky Graphite Recovery in Flotation via a Combined MultipleTreatments Technique of Middlings. Minerals 2017, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.J.; Wang, C.; Hu, Y.; Song, S.X. Effect of droplet size of the emulsified kerosene on the floatation of amorphous graphite. J. Dispers. Sci. Technol. 2017, 38, 889–894. [Google Scholar] [CrossRef]
- Wang, X.X.; Bu, X.N.; Ni, C.; Zhou, S.Q.; Yang, X.L.; Zhang, J.; Alheshibri, M.; Peng, Y.L.; Xie, G.Y. Effect of scrubbing medium s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite. Miner. Eng. 2021, 163, 106766. [Google Scholar] [CrossRef]
- Weng, X.Q.; Li, H.Q.; Song, S.X.; Liu, Y.Y. Reducing the Entrainment of Gangue Fines in Low Grade Microcrystalline Graphite Ore Flotation Using Multi-Stage Grinding-Flotation Process. Minerals 2017, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.Q.; Wang, X.X.; Bu, X.N.; Shao, H.Z.; Hu, Y.; Alheshibri, M.; Li, B.; Ni, C.; Peng, Y.L.; Xie, G.Y. Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation. Miner. Eng. 2020, 158, 106592. [Google Scholar] [CrossRef]
- Bu, X.N.; Zhang, T.T.; Chen, Y.R.; Peng, Y.L.; Xie, G.Y.; Wu, E.D. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochem. Probl. Miner. Process. 2018, 54, 732–740. [Google Scholar]
- Bu, X.N.; Zhang, T.T.; Peng, Y.L.; Xie, G.Y.; Wu, E.D. Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces. Minerals 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.G.; Xie, G.Y.; Xia, W.C.; Peng, Y.L. Flotation Optimization of Ultrafine Microcrystalline Graphite Using a Box-Behnken Design. Int. J. Coal Prep. Utilization 2018, 38, 281–289. [Google Scholar] [CrossRef]
- Li, H.; Feng, Q.; Yang, S.; Ou, L.; Lu, Y. The entrainment behaviour of sericite in microcrystalline graphite flotation. Int. J. Miner. Process. 2014, 127, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Ou, L.; Feng, Q. The Recovery Mechanisms of Sericite in Microcrystalline Graphite Flotation. Physicochem. Probl. Miner. Process. 2015, 51, 387–400. [Google Scholar]
- Ross, V.E. Flotation and entrainment of particles during batch flotation tests. Miner. Eng. 1990, 3, 245–256. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol. 2016, 288, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Tan, J.; Li, B.; Xie, G. Reducing quartz entrainment in fine coal flotation by polyaluminum chloride. Fuel 2019, 235, 150–157. [Google Scholar] [CrossRef]
- Duarte, A.C.P.; Grano, S.R. Mechanism for the recovery of silicate gangue minerals in the flotation of ultrafine sphalerite. Miner. Eng. 2007, 20, 766–775. [Google Scholar] [CrossRef]
- Gong, J.; Peng, Y.; Bouajila, A.; Ourriban, M.; Yeung, A.; Liu, Q. Reducing quartz gangue entrainment in sulphide ore flotation by high molecular weight polyethylene oxide. Int. J. Miner. Process. 2010, 97, 44–51. [Google Scholar] [CrossRef]
- Silvester, E.J.; Heyes, G.W.; Bruckard, W.J.; Woodcock, J.T. The recovery of sericite in flotation concentrates. Miner. Process. Extr. Metallurgy 2011, 120, 10–14. [Google Scholar] [CrossRef]
- Leistner, T.; Peuker, U.A.; Rudolph, M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner. Eng. 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Neethling, S.J.; Cilliers, J.J. The entrainment factor in froth flotation: Model for particle size and other operating parameter effects. Int. J. Miner. Process. 2009, 93, 141–148. [Google Scholar] [CrossRef]
- Ata, S. Phenomena in the froth phase of flotation—A review. Int. J. Miner. Process. 2012, 102–103, 1–12. [Google Scholar] [CrossRef]
- Kirjavainen, V.M. Review and analysis of factors controlling the mechanical flotation of gangue minerals. Int. J. Miner. Process. 1996, 46, 21–34. [Google Scholar] [CrossRef]
- Xu, W.; Sun, K.; Qiu, Y.; Zhang, L.; Yang, L.; Wei, S.; Ding, D. Understanding the collection behavior of gangue minerals in fine flake graphite flotation. Physicochem. Probl. Miner. Process. 2022, 58, 101–112. [Google Scholar] [CrossRef]
- Qiu, Y.S.; Zhang, L.Y.; Sun, K.K.; Li, Y.; Qian, Y.P. Reducing entrainment of sericite in fine flaky graphite flotation using polyalurninum chloride. Physicochem. Probl. Miner. Process. 2019, 55, 1108–1119. [Google Scholar]
- Neethling, S.J.; Lee, H.T.; Cilliers, J.J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Miner. Eng. 2003, 16, 1123–1130. [Google Scholar] [CrossRef]
- George, P.; Nguyen, A.V.; Jameson, G.J. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Miner. Eng. 2004, 17, 847–853. [Google Scholar] [CrossRef]
- Cilek, E.C. The effect of hydrodynamic conditions on true flotation and entrainment in flotation of a complex sulphide ore. Int. J. Miner. Process. 2009, 90, 35–44. [Google Scholar] [CrossRef]
- GÜLer, T.; Akdemir, Ü. Statistical evaluation of flotation and entrainment behavior of an artificial ore. Trans. Nonferrous Met. Soc. China 2012, 22, 199–205. [Google Scholar] [CrossRef]
- Xia, W. Role of particle shape in the floatability of mineral particle: An overview of recent advances. Powder Technol. 2017, 317, 104–116. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wang, Z.; Wang, D.; Zhan, H. Experimental Investigation of the Mechanism of Foaming Agent Concentration Affecting Foam Stability. J. Surfactants Detergents 2017, 20, 1443–1451. [Google Scholar] [CrossRef]
- Wang, H.; Wei, X.; Du, Y.; Wang, D. Effect of water-soluble polymers on the performance of dust-suppression foams: Wettability, surface viscosity and stability. Colloids Surf. A Physicochem. Eng. Aspects 2019, 568, 92–98. [Google Scholar] [CrossRef]
- Ke, Y.; Shen, B.; Sun, H.; Liu, J.; Xu, X. Study on foaming of formulated solvent UDS and improving foaming control in acid natural gas sweetening process. J. Nat. Gas Sci. Eng. 2016, 28, 271–279. [Google Scholar] [CrossRef]
- Xia, W.; Zhou, C.; Peng, Y. Improving flotation performance of intruded coal using heavy oil as a collector. Energy Sources Part A Recovery Util. Environ. Effects 2017, 39, 1124–1130. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Zhang, R.; Xing, Y.; Gui, X. Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal. Fuel 2019, 239, 717–725. [Google Scholar] [CrossRef]
- Rudolph, M.; Peuker, U.A. Hydrophobicity of Minerals Determined by Atomic Force Microscopy—A Tool for Flotation Research. Chem. Ing. Technik. 2014, 86, 865–873. [Google Scholar] [CrossRef]
- Hou, J.; Ma, X.; Fan, Y.; Dong, X.; Yao, S. Effect of particle properties on rheology of low-concentration coal suspensions. Physicochem. Probl. Miner. Process. 2020, 56, 984–995. [Google Scholar] [CrossRef]
- Li, G.; Deng, L.; Cao, Y.; Wang, B.; Ran, J.; Zhang, H. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation. Int. J. Miner. Process. 2017, 169, 47–52. [Google Scholar] [CrossRef]
- Gonzenbach, U.T.; Studart, A.R.; Tervoort, E.; Gauckler, L.J. Stabilization of Foams with Inorganic Colloidal Particles. Langmuir 2006, 22, 10983–10988. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The behaviour of mineral matter in fine coal flotation using saline water. Fuel 2013, 109, 309–315. [Google Scholar] [CrossRef]
- Zheng, X.; Johnson, N.W.; Franzidis, J.P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 2006, 19, 1191–1203. [Google Scholar] [CrossRef]
Minerals | SiO2 | Al2O3 | K2O | Na2O | Fe2O3 | SO3 | CaO | FC | Other |
---|---|---|---|---|---|---|---|---|---|
Mica | 48.51 | 37.04 | 9.17 | 1.09 | 0.48 | 0.09 | 0.05 | / | 3.57 |
Quartz | 98.87 | 0.25 | 0.28 | / | 0.10 | 0.04 | 0.04 | / | 0.42 |
Graphite | 1.78 | 0.64 | 0.16 | 0.09 | 0.57 | / | / | 96.13 | 0.63 |
Size Fraction of Mixtures | −38 μm | −20 μm |
---|---|---|
Yield of concentrate (%) | 84.49 | 89.06 |
FC of concentrate (%) | 78.82 | 74.78 |
Recovery of concentrate (%) | 99.9 | 99.9 |
Water recovery in froth (%) | 63.14 | 70.08 |
The degree of entrainment | 0.85 | 0.96 |
Recovery of gangue by entrainment (%) | 53.68 | 67.38 |
FC of mixtures (%) | 66.67 | 66.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Mao, Z.; Sun, K.; Zhang, L.; Qian, Y.; Lei, T.; Liang, W.; An, Y. Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation. Minerals 2022, 12, 1068. https://doi.org/10.3390/min12091068
Qiu Y, Mao Z, Sun K, Zhang L, Qian Y, Lei T, Liang W, An Y. Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation. Minerals. 2022; 12(9):1068. https://doi.org/10.3390/min12091068
Chicago/Turabian StyleQiu, Yangshuai, Zhenfei Mao, Kangkang Sun, Lingyan Zhang, Yupeng Qian, Tao Lei, Wenbo Liang, and Yaxin An. 2022. "Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation" Minerals 12, no. 9: 1068. https://doi.org/10.3390/min12091068
APA StyleQiu, Y., Mao, Z., Sun, K., Zhang, L., Qian, Y., Lei, T., Liang, W., & An, Y. (2022). Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation. Minerals, 12(9), 1068. https://doi.org/10.3390/min12091068